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Abstract

KSP is an imperative DSL in music production that enables
realistic modelling of musical instruments in real-time us-
ing Kontakt as a runtime environment. Once a niche topic
for hobbyists, the field has since professionalized, with Kon-
takt becoming an industry standard. Its scripting language,
however, has not evolved much, lacking modern functional
and data abstractions while remaining closed-source. This
paper proposes transformations that introduce modularity
and basic abstraction principles to KSP. This entails func-
tions with parameters and return values, recursive data
types, and the implementation of lexical scope to replace
the current global variable management. The transforma-
tions have been implemented in a preprocessing compiler
framework—-preceding the actual KSP interpreter—to an ex-
tend, that allows for the new syntax elements to be used in
real-world KSP scripts.
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1 Introduction

By providing notations and constructs tailored to the re-
quirements of a specific domain, domain-specific languages
can significantly improve domain expert involvement in
software development and widen accessibility by requir-
ing less programming knowledge [12][26][1]. As Mernik
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et al. (2005) note, specialized notation increases expres-
siveness and productivity by reducing boilerplate code.
However, this specialization sacrifices the flexibility of
general-purpose programming languages (GPLs). DSLs of-
ten feature proprietary, non-standardized syntaxes which,
coupled with issues like poor documentation and high de-
velopment costs, can limit reusability and hinder long-term
adoption. [12]

The Kontakt Script Processor (KSP) is a DSL primarily
used in music production. Introduced around the same
time as the aforementioned DSL literature, KSP is part of
Kontakt—a software sampler for audio recordings (samples)
[28][18][2]. Samplers are a type of virtual instrument often
used as plugins for composition in digital audio worksta-
tions (DAWs) [24]. As a platform, Kontakt is widely used
to create sample libraries that enable the realistic, real-time
modelling of acoustic instruments, replicating their char-
acteristics [25]. Released in 2004 with Kontakt 2 [19][20],
KSP was advertised as an effect or composition tool [11],
allowing access to and manipulation of Kontakt-specific
parameters. Similar to many DSLs, official information on
KSP’s design is scarce beyond basic documentation and an
active online community, from which much of this papers’
information is sourced. KSP is an imperative, event-driven,
strongly-typed language, with rudimentary control struc-
tures and data types. Its syntax shows influences from lan-
guages like Pascal/Ada, such as the use of the := operator
for assignments, or Perl with its use of the first character of
variable names to denote their type. Critically, KSP lacks ab-
straction and modularity: it supports only global variables,
primitive data types, statically declared arrays, and no func-
tion definitions with parameters or return values. These
limitations, often justified by real-time audio demands [5],
alongside its basic built-in editor (lacking syntax highlight-
ing or autocomplete), suggest KSP was initially intended
only for small scripts.

As is common for DSLs, the syntax has hardly changed
since its introduction, even though music production and
virtual instruments—along with Kontakt’s usage—have
evolved considerably. Virtual instruments now play a cru-
cial role in film and video game soundtracks, Kontakt has
established itself as an industry standard for composers and
the development of sample libraries has become an entire
business sector [6][4][7][18][27]. What once consisted of
simple products playing back pre-recorded audio loops has
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evolved into sophisticated libraries with preset systems,
comprehensive user interfaces and advanced automation
and sequencing capabilities.

Increasing script complexity and industry professional-
ization has led to the hiring of more software developers. At
the same time, the language’s limitations might deter a lot of
users. KSP seems to now reflect some of the disadvantages
listed by Mernik et al, as syntactic peculiarities, limited gen-
erality, a changing domain and the high investment costs
for adapting a DSL become noticeable. Meanwhile, KSP’s
closed-source nature prevents direct community improve-
ments. Thus, introducing abtractions requires lowering
transformations that work around the language’s inher-
ent limitations. We found ways around these and present
three advanced abstractions for KSP:

« KSP’s requirement that all variables be declared in the
global scope increases complexity and limits modular-
ity, as code blocks cannot be isolated and reused in-
dependently. We introduce lexically scoped variables,
which we lower to global variables. However, for per-
formance, it is important to limit the number of global
variables used, hence we carefully support variable
reuse (using a lifetime analysis) while taking thread-
safety and callbacks into account (Section 3).

We introduce user-defined functions with arguments
and call-by-reference return variables into KSP. This
requires a series of transformations to promote re-
turn parameters, hoist function calls to statements,
and eventually inline function definitions (Section 4).
KSP only supports primitive data types and statically
declared arrays, which complicates modelling com-
plex data structures. We introduce an interface for
defining recursive Algebraic Data Types (ADTs) and
lower them to KSP arrays. This necessitates complex
transformations, including the introduction of mem-

ory management by reference counting to remain
compatible with real-time applications (Section 5).

Overall, this paper shares our experience of introducing pro-
gramming abstractions into a severely limited DSL. While
it seemed infeasible at first, our experience shows that
retrofitting a DSL with abstractions can be possible if one
is willing to invest significant effort to find and implement
analyses and transformations that work around the DSL’s
limitations. We believe that this experience can inspire
others to seek programming abstractions for other DSLs,
possibly applying similar techniques.

2 The KSP Syntax

To get a grasp of its syntax and limitations, the basic
concepts and constructs of the DSL will be illustrated
with an example. KSP is an event-driven language where
scripts consist of event handlers (callbacks), enclosed by
on <event-name> and end on. In between, statements are
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executed sequentially. The callbacks form the highest level
of the program and are triggered by specific events.

Listing 1a shows two callbacks: on init and on note.
The on init callback is executed once on loading the script,
while the on note callback is invoked on every note-on
event. This particular example plays a triad in root position
above every note the user plays on its MIDI controller [14].
If the input velocity is below 64, a minor triad is played,
otherwise a major triad. The built-in variable $EVENT_NOTE
holds the MIDI note number that triggered the on note
callback, $EVENT_VELOCITY its velocity. $ is the type prefix
for integer variables, % for arrays. %maj is a user-defined ar-
ray containing the semitones of a major triad with its size
determined by a compile-time constant. All user-defined
variables must be declared in the on init callback (using
declare) before they can be used. When a note event is
triggered the if statement (line 10) decides on assigning a
minor or a major third to the variable $new_pitch based
on the velocity. The built-in command play_note (that can
trigger additional note events) is then called with its note
and velocity parameters. Here, the parameter note is rep-
resented by $new_pitch and calclulated by adding the root
note to the interval from %maj, resulting in all samples corre-
sponding to triad’s MIDI notes being played simultaneously.
In addition to integers, KSP supports real and string types,
each with its own prefix. [15][11][19]

3 From Lexical to Global Scope

As variables in KSP are exclusively global and declared in
the on init callback [17], they can be referenced in any
subsequent callback. Declarations in other callbacks are not
possible because KSP does not allow dynamic memory allo-
cation. Instead, all variables are statically allocated and re-
main in memory for the entire runtime of the script.

In contrast, traditional lexical (static) scoping—introduced
in ALGOL 60—allows a variable’s visibility to be determined
from the source code alone [22][13]. This facilitates a clear
understanding on which variables belong to which section
of the code. Using such a system in Listing 1a, would mean
that the entire on init callback could be omitted, since all
the variables declared there, are only used in the on note
callback. Specifically, lexical scoping could be used to create
a version like the one in Listing 1b (left) allowing for better
readability and assignment of the variables without having
to constantly switch to the on init callback. Above all, the
now local variables could be given more expressive names,
such as the descriptive names used here for the individual
intervals. To achieve this, a transformation process has to
be implemented that efficiently transfers the local variables
into the global scope.
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1 on init 1o 1 on init
2 declare $current_note 2 on note A 2 declare maj[3] := (@, 4, 7)
declare $new. pitch 3 (:lec'lax'e current_note: int := EVENT_NOTE 3 declare current_note®: int
declare %maj[3] := (0, 4, 7) 4 if(EVENT_VELOCITY < 64) ) declare min_thirde: int
d L 5 declare min_third := current_note + maj[1]-1 [ 5 end on
end on 6 play_note(min_third, 60, 0, -1) g 6 on note
6 ... 7 else [} 7 current_note® := EVENT_NOTE
7 on note 8 declare maj_third := current_note + maj[1] o 8 if(EVENT_VELOCITY < 64)
8 $current_note := $EVENT_NOTE 9 play_note(maj_third, 60, 0, -1) 2 9 min_thirdo := current_note® + maj[1]-1
9 $new_pitch := $current_note + %¥maj[1] 10 end if ﬁ 10 play_note(min_thirdo, 60, 0, -1)
10 if($EVENT_VELOCITY < 64) 11 declare perf_fifth := current_note + maj[2] % 1 else
11 $new_pitch := $current_note + %maj[1]-1 12 play_note(perf_fifth, 60, @, -1) N 12 min_thirdo := current_noted + maj[1]
12 end if 13 end on 13 play_note(min_thirdo, 60, 0, -1)
. 14 end if
13 play_nqte($new_p1tch, 60, o, _1). 15 min_thirdo := current_note@ + maj[2]
14 $new_pitch := $cu1_‘rent_note + %majl2] 16 play_note(min_thirde, 60, 0, -1)
15 play_note($new_pitch, 60, 0, -1) 17 end on
16 end on

(a) A KSP Script with global scope.
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(b) Example of a script with lexical scope before and after Variable Reuse.

Figure 1. Example of a KSP Script (left) and Variable Reuse Algorithm (right).

3.1 Establishing Lexical Scoping

Before this transformation, however, a verification of the
lexical scope and its rules is needed. In our AST, a scope
is represented by a BlockNode holding an ordered list of
statements (e.g., declarations and control structures). Vari-
ables declared in the on init callback are global, variables
in other callbacks and subprograms are local by default. A
reference to an undeclared variable, or multiple declarations
of the same variable within a single scope, triggers an error.
However, shadowing is allowed. Variables can be declared
with the same name as a variable in the outer scope with-
out affecting the latter.

The approach follows standard compiler techniques [3]. A
stack frame is used to store the variable declarations. How-
ever, instead of a LIFO stack, we use an array of maps where
each map represents a scope that links variable names to
their declarations. The BuildLexicalScope process traverses
the AST using a visitor pattern [8]. It pushes a new map onto
the stack structure when entering a block and pops it when
leaving. Declarations are added to the current (top) map, ex-
cept for those explicitly declared as global, which are added
to the bottom map representing the global scope (on init
callback). If a variable reference is encountered, each map is
searched from the most local to the global scope to bind it to
its declaration. If no declaration is found, an UndeclaredVari-
ableException is raised; likewise, if a duplicate declaration is
attempted in the same scope, a RedeclaredVariableException
occurs. This yields an AST,,; with verified lexical scope and
variable references unambiguously linked to their declara-
tions.

After this compiler pass, the references of current_note
in Listing 1b (lines 5, 8, 11) are bound to their local declara-
tion in line 3, while the reference to min_third in the nested
scope of lines 5-6 is bound to its declaration in line 5.

3.2 Variable Reuse

A naive method to transform from lexical scope to KSP’s
global scope is to promote all local variables by declaring
them in the on init callback. Although this makes the code

69

compatible with KSP, it increases the number of static decla-
rations and memory usage—an issue in real-time audio pro-
cessing where all such variables reside in RAM. With this
approach, Listing 1b (left) would have three more variables
than the KSP version in Listing 1a.

To address this, the Variable Reuse algorithm exploits
the fact that a local variable’s lifetime ends when its scope
is exited, making it available for reuse in subsequent call-
backs. Once a scope is exited, its variables are considered
passive, qualifying them for reuse, while global variables
remain non-reusable to avoid conflicts. Since KSP always
initializes freshly declared variables, all replaced declara-
tions are converted into type-neutral assignments, while
any pre-assigned values are retained.

The implementation centers on a map (PassiveVariables-
Map), collecting passive variables, using a hash h computed
from each variable’s type and size (with the size factor ap-
plied only to arrays):

computeHash(variable) = (Type(variable), Size(variable))

Additionally, PassiveVariablesUsedMap tracks which passive
variables have been used in the current block to prevent
multiple reuses in the same scope, while a stack of maps
(PassiveVarsReplace) maintains the binding between original
variable names and their replacements. Global variables are
stored in GlobalDeclarations to prevent reuse.

During AST traversal, when a block is visited, a new
map is pushed onto the stack frame. As the statements
within are processed, passive variables are identified and
collected. Upon exiting the block, they are added to Pas-
siveVariablesMap for reuse in subsequent scopes while any
passive variables used in that block are released by remov-
ing the topmost PassiveVarsReplace map. If a declaration
is global, it is deleted from the current AST position and
added to GlobalDeclarations. For a local declaration, h is
calculated to locate a matching, free passive variable. If
a match is found in PassiveVariablesMap and not already
in use, the declaration is replaced by an assignment and
recorded in the topmost PassiveVarsReplace map. Otherwise,
it is marked for future addition as passive once the block
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Original
on note
declare current_note: int := EVENT_NOTE
if(EVENT_VELOCITY < 64)
play_offset(current_note, maj[1]-1)
print_offset(current_note, maj[1]-1)
6 else
7 play_offset(current_note, maj[1])
8 end if
9 play_offset(current_note, maj[2])
10 end on
11 function play_offset(root: int, add: int)
12 declare pitch: int :=root + add
13 play_note(pitch, 60, 0, -1)
14 end function
15 function print_offset(root: int, add: int)
16 declare pitch: int :=root + add
17 message("Played Note: ", pitch)
18 end function

After Parameter Promotion

on note
declare current_note: int := EVENT_NOTE
if(EVENT_VELOCITY < 64)
declare pitch0: int
play_offset(current_note, maj[1]-1, pitche)
declare pitchl: int
print_offset(current_note, maj[1]-1, pitchl)
else
declare pitch0: int
play_offset(current_note, maj[1], pitcho)
end if
declare pitch0: int
play_offset(current_note, maj[2], pitcho)
end on
function play_offset(root: int, add: int, pitch@)
pitch@ := root + add
play_note(pitcho, 60, 0, -1)
end function
function print_offset(root: int, add: int, pitchl)
pitchl :=root + add
message("Played Note: ", pitchl)

Mathias Vatter and Sebastian Erdweg

After Variable Reuse

20

on note
declare current_note: int := EVENT_NOTE
if(EVENT_VELOCITY < 64)
declare global pitch@: int
play_offset(current_note, maj[1]-1, pitche)

pitcho :=0

print_offset(current_note, maj[1]-1, pitcho)
else

pitcho :=0

play_offset(current_note, maj[1], pitcho)
end if
pitcho :=0

play_offset(current_note, maj[2], pitche)

end on

function play_offset(root: int, add: int, pitcho)
pitcho :=root + add
play_note(pitcho, 60, 0, -1)

end function

function print_offset(root: int, add: int, pitchl)
pitchl :=root + add
message("Played Note: ", pitchl)

22 end function

22 end function

Figure 2. Left: Example of a script with functions; Middle: Example of a script after Parameter Promotion; Right: Example of

a script after Parameter Promotion and Variable Reuse

ends. Every visited variable reference is checked against the
PassiveVarsReplace stack to make sure that its binding to its
declaration remains intact. After the entire AST is traversed,
all remaining declarations are promoted to the global scope.
To ensure that all global variables have distinct identifiers,
a global Gensym process generates unique names during
promotion.

After applying Variable Reuse, Listing 1b shows the trans-
formation on the right. All local declarations are converted
into assignments, renamed and relocated into the on init
callback. The local variable maj_third (line 8) is replaced by
the variable min_third, which became passive after the if
branch was completed. Likewise, the variable perf_fifth
(line 11) was replaced by the passive variable min_third.

3.3 Parameter Promotion

While Variable Reuse efficiently reuses passive variables,
it does not address function-local declarations. Reusing
such variables across different functions is infeasible due to
varied invocation contexts (callbacks, nested subprograms),
even if variables become passive upon function exit. A naive
global declaration of all function variables unnecessarily in-
creases the number of declarations. In figure 2 (left) the pre-
vious example is now abstracted with play_offset while
print_offset is introduced, outputting debug information
about the played offset. Naively promoting play_offsets
local variable results in one global declaration, but by also
applying this to the variable from print_offset, we would
waste optimization potential.

Instead, the Parameter Promotion algorithm promotes
function-local variables to parameters, moving their decla-
rations to the call site. At the callback level, a function’s
local variables become assignments and are added to its
formal parameter list. Thus, declarations only occur at call-
back level, enabling Variable Reuse. To mark their limited
lifetime, they are placed in an artificial local scope with the
call. For nested functions, Parameter Promotion causes their
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variables to be continuously promoted until they reach the
callback level (assuming an implementation for parame-
terized functions as detailed in Section 4, since KSP lacks
native support).

During AST traversal, function-local variables are col-
lected in three maps: a map assigning each function its local
variables (localVarDeclarations), a map storing the variables
that have been “promoted” to the callback level (declaresPer-
Stmt) and one storing function variables already declared as
global. When a function call occurs, its definition is visited
once, applying Variable Reuse to its local declarations, en-
suring unique naming. These processed variables are stored
in localVarDeclarations (with a pointer to the corresponding
function) and converted into assignments. After function
traversal, they become formal parameters, with references
added as actual parameters at call sites. For nested calls
this is repeated until the variables reach the callback level,
where they are transferred to declaresPerStmt assigning
them to the corresponding statement. Finally, all those vari-
able declarations are placed in local scopes along with the
statement itself, replacing the original call.

Applying this to Figure 2 initially creates more declara-
tions than needed. pitch@ is inserted above each invoca-
tion of play_offset and passed as an argument. Its original
declaration is converted to an assignment with its [_value
added to the header. Similarly, the variable in print_offset
is promoted and renamed (pitchl), and inserted above its
call. Note that there are two separate local scopes in the
if branch. The benefit emerges in the subsequent Variable
Reuse pass. pitch@ (line 5) quickly becomes passive due to
its artificial scope and is reused for pitch1 (line 7), with sim-
ilar reuse for declarations in lines 10 and 13, ultimately re-
ducing the example’s promoted variables to two.

Consequently, although ParameterPromotion requires
positioning function-local variables above each call, their
placement in artificial local scopes ensures their reuse. Any
number of consecutive calls of play_offset would result



Retrofitting a Virtual Instrument DSL with Programming Abstractions

1 on ui_controls()
declare i: int :=NI_UI_ID
user_wait(500000)

no_wait()
5 message(i)
6 end on
function user_wait(time: int)
8 declare times_two: int :=time % 2

9 wait(times_two)
10 end function
11 function no_wait()

1 on ui_controls() 12 declare i: int :=2
declare i: int :=NI_UI_ID 13 message(i)
wait(1000000) 14 end function
message(i)

end on

thread-safe

(a) Asynchronous Callback
with Local Variables

GPCE ’25, July 3-4, 2025, Bergen, Norway

1 on ui_controls()
2 declare i[MAX::CB::STACK]: int[]
3 i[NI_CALLBACK_ID mod MAX::CB::STACK] := NI_UI_ID
user_wait(500000)
no_wait()
message(i[NI_CALLBACK_ID mod MAX::CB::STACK])
end on
s function user_wait(time: int)
9 declare times_two[MAX::CB::STACK]: int[]
10 times_two[NI_CALLBACK_ID mod MAX::CB::STACK] :=time * 2
11 wait(times_two[NI_CALLBACK_ID mod MAX::CB::STACK])
12 end function
13 function no_wait()
14 declare i: int:=2
15 message(i)
16 end function

DimensionExpansion

thread-safe

(b) Example of a script with asynchronous operations and functions; Left: Example after MarkThreadSafe;
Right: Example after DimensionExpansion

Figure 3. Example of an asynchronous callback (left) and the Dimension Expansion Algorithm (right).

in a single global variable declaration, meaning, that in the
worst case this equals a naive promotion’s variable count;
in the best case, the promoted variables can be reused.

3.4 Dimension Expansion

While, so far, callbacks have been described and treated as
sequential and self-contained, they can be interrupted by
asynchronous KSP operations such as wait. Here, the pro-
gram waits for a specified duration, during which another
callback may be executed. [16] Variables that were previ-
ously set, could be reassigned in an intervening callback,
leading to inconsistent variable states upon re-entering the
original.

Consider Listing 3a. After VariableReuse, i would be de-
clared globally. Here, i is set to the UI_ID of a control. Af-
terwards, the callback waits for one second before printing
i. If another UI control is activated during this time, a new
instnace of the callback is executed, global i is overwritten,
and the resumed callback prints the new value rather than
the original. To mitigate this, each callback and function is
annotated with a “thread safety” property using the Mark-
ThreadSafe algorithm. If during its DFS traversal any asyn-
chronous operation is detected within a function call chain,
all calling functions and the callback are marked as thread-
unsafe. However, a thread-safe function invoked within a
thread-unsafe callback stays thread-safe (Fig. 3b).

For thread-unsafe callbacks, DimensionExpansion ensures
that local variables remain unique in each callback ver-
sion. To bind a local scalar variable to a callback, it is
transformed into an array where each index represents
an execution of the callback. Similarly, local arrays gain
an additional dimension. To determine the correct index
the built-in variable NI_CALLBACK_ID (assigning a unique
ID to each executed callback) is used. It is automatically
incremented with each callback invocation. The algorithm
applies expandDimension(variable, sizeExpr) to add a new
dimension of size sizeExpr to a given variable. A one-
dimensional variable v becomes v[sizeExpr]. If v has d
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dimensions, a new (d + 1)-th dimension is added. Vari-
able references are updated accordingly so that an expres-
sion like v or v[i] are indexed with cbIndex, resulting in
v[cbIndex] or v[i, cbIndex] where cbIndex is calculated as
NI_CALLBACK_ID mod MAX::CB::STACK. MAX::CB::STACK is a
global constant representing the maximum number of con-
current callbacks.

The local variable i in line 2 (Fig. 3b) is transformed
into an array i[MAX::CB::STACK], while its value assign-
ment is moved to line 3. The index uses the current callback
ID. The same transformation applies to times_two (line 9),
with its references converted to array elements indexed by
NI_CALLBACK_ID.

3.5 Putting It All Together

The transformation from lexical to global scope is achieved
by sequentially applying the previously described algo-
rithms to the AST. The LexicalToGlobalScope procedure
therefore contains the following sequence:

MarkThreadSafe

DimensionExpansion ParameterPromotion — VariableReuse

BuildLexicalScope —>

It yields a transformed AST,,;, in which all variable refer-
ences are linked to their declarations, variable states are con-
sistent, and local variables are efficiently transferred to the
on init callback.

Due to the addition of inconsistent variable states, Vari-
ableReuse is extended with additional logic. After the Dimen-
sion Expansion process, thread-unsafe variables have their
own value per global callback ID, which allows their reuse in
other thread-unsafe callbacks with other thread-unsafe vari-
ables. To enable this, the computeHash function is modified
to consider type, size and thread safety:

computeHashNew(v) = (Type(v), Size(v), ThreadSafety(v))

The MarkThreadSafe process supplies the necessary thread
safety information, ensuring that thread-unsafe variables
are only replaced by similarly marked ones, while thread-
safe variables remain eligible for reuse even within thread-
unsafe callbacks.
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1 function search_matrix(matrix: int[][],target: int)

on note declare row, col: int

1
2 declare pitch: int := EVENT_NOTE

3 declare velo: int := EVENT_VELOCITY

4 play_note(pitch, clamp(velo, 90), 0, -1)
5 end on

o end if

6 function clamp(value: int, max: int): int 8 inc(col)
7 declare final: int :=value 9 end while

8 if (value < 0) inc(row)

9 final := 0 end while

return -1

else if (value > max) n
end function

11 final := max
12 end if

13 return final

14 end function

(a) Example of a function with parameters
and return values.

while(row < num_elements(matrix, 1))
while(col < num_elements(matrix, 2))
if matrix[row,col] = target
return (row * num_elements(matrix,1))+col

Mathias Vatter and Sebastian Erdweg

function search_matrix(matrix: int[][], target: int)
declare RETURN_FLAG: int
while(RETURN_FLAG = 0)
declare row, col: int
while(row<num_elements(matrix,1) and RETURN_FLAG=0)
while(col<num_elements(matrix,2) and RETURN_FLAG=0)
if matrix[row,col] = target
return (rowsnum_elements(matrix,1)) +col
RETURN_FLAG = 1
continue
end if
inc(col)
end while
if(RETURN_FLAG = 1)
continue
end if
inc(row)
end while
if(RETURN_FLAG = 1)
continue
end if
return -1 //

RewriteReturnNodes

If the target is not found
RETURN_FLAG i= 1
continue
end while
5 end function

(b) The Rewrite Return Notes Algorithm; Left: A matrix search algorithm with multiple return
statements. Right: The transformed example.

Figure 4. Combined figure showing the function example (left) and the return rewrite algorithm (right).

4 Implementation of Functions

Functions, or subprograms, are key abstraction mechanisms
that structure and reuse code by encapsulating complex
computations into clearly defined, parameterized units. An
essential feature is their ability to receive input parame-
ters and return computed results via return values [23]. In
contrast, KSP’s native function syntax is highly restrictive.
They are defined globally by enclosing a sequence of state-
ments between functionandend functionkeywords, and
invoked using call <func_name>. However, they lack sup-
port for function-local variables, parameters, return values,
or early termination via return statements. Additionally,
they cannot be invoked within expressions or passed as
arguments and must be wrapped in standalone statements.
They are prohibited in the on init callback and certain
KSP operations are not permitted in native function bodies
limiting their usability to only marginally improving code
structuring. To overcome these limitations, we have devised
several transformations.

4.1 Syntax and Representation in the AST

To represent the properties of subprograms in the surface
language and the AST, we used a slightly modified syn-
tax of native KSP functions, adding a parenthesized, type-
annotated parameter list to the header. The function body
may now contain arbitrary statements, and permit return
nodes to terminate execution prematurely and yield a value.
Moreover, functions can be invoked in an expression con-
text.

Listing 4a illustrates a clamp function restricting an inte-
ger input to the range [0, max]. The local variable final
is used to store the input value and gets returned. The
function is used without the restrictions of native KSP func-
tions by emplying it directly as an argument in the built-in
play_note function.
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The essential constructs are divided into two categories:
the subprogram definition and the subprogram call [23]. Ac-
cordingly, two AST nodes are introduced: FunctionDefNode
and FunctionCallNode. The former is defined in the global
scope alongside callbacks and stored in the root node (Pro-
gramNode), with a lookup table updated for quick retrieval
by name and parameter count. Each definition contains a
FunctionHeaderNode speficying its name, an ordered list of
formal parameters and the return type. The function body
is a BlockNode, containing a sequence of statements and
optionally ReturnNodes. Each FunctionCallNode contains a
FunctionHeaderRefNode with its name and a list of actual pa-
rameters (expressions). Due to this node being a reference,
this design supports higher-order functions. Each function
call binds to a specific function definition in the root node
based on name and argument count.

4.2 Rewriting Return Statements

Before transforming functions into valid KSP code, we de-
scribe the implementation of return statements for value-
returning and premature termination. In Listing 4a, the
return statement marks the end of the function control
flow and one might simply assign its value to a temporary
variable. However, in nested conditionals this approach fails
since control may continue past the intended exit point.
While a break statement would normally serve to in-
terrupt execution by exiting a loop, KSP lacks break sup-
port. Instead, the RewriteReturnNodes algorithm repurposes
continue for termination upon encountering a return.
Therefore, it wraps the function body in a while loop con-
trolled by a RETURN_FLAG. Upon encountering return, the
algorithm inserts RETURN_FLAG 1 followed by continue,
forcing the loop condition to be re-checked. As continue
only affects the innermost loop, each nested loops’ condi-
tion is extended to check RETURN_FLAG = 0, with post-loop
checks to propagate exiting. Figure 4b illustrates this with
a matrix search: Upon finding the target, the inner loop
is exited, and an immediate check after each nested loop
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on note
declare pitch: int := EVENT_NOTE
declare velo: int := EVENT_VELOCITY
declare ret@: int := clamp(velo, 90)
play_note(pitch, reto, 0, -1)
end on

on note
declare pitch: int := EVENT_NOTE
declare velo: int := EVENT_VELOCITY
play_note(pitch, clamp(velo, 90),0,-1)
end on

FunctionCallHoisting

1 function clamp(value: int, max: int): int
declare final: int :=value
if (value < 0)
final :=0
else if (value > max)
final :=max
end if
return final
end function

declare final: int :=value

if (value < 0)
final:=0

else if (value > max)
final := max

end if

ret$0 := final

end function

ReturnParameterPromotion

function clamp(ret$0: int, value: int, max: int) 4 declare ret0: iqt
Functioninlining 5 declare final: int :=velo
; if (velo < @)
formal parameters final = 0
[ v o] | | ctse if (veto > )
] final := 90
(oo [ e [ ] o ena it
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on note
declare pitch: int := EVENT_NOTE
declare velo: int := EVENT_VELOCITY
declare ret0: int
clamp(ret@, velo, 90)
play_note(pitch, reto, 0, -1)
end on

on note
declare pitch: int := EVENT_NOTE
declare velo: int := EVENT_VELOCITY

ReturnFunctionlsolation

1 ret0 := final
play_note(pitch, reto, 0, -1)

actual parameters

; end on

Figure 5. Function Isolation Transformations with the clamp function example.

triggers a continue to bypass any further statements (e.g.,
inc(row)). Conversely, functions with a single, final return
(e.g., clamp) require no such transformation.

Critically, every control path must include a return; oth-
erwise, RETURN_FLAG remains 0, trapping the function in an
infinite loop and causing a KSP runtime error.

4.3 Function Isolation

To support return statements and allow embedded calls in
expressions, functions are isolated: calls become standalone
statements, and definitions are transformed accordingly.
Figure 5 illustrates the transformation steps with clamp.
Since isolated calls cannot directly yield return values,
the return keyword is rendered ineffective. Return Parame-
ter Promotion converts return statements into assignments
to a temporary return variable, which is then promoted to
a formal parameter, effectively replacing the conventional
return mechanism with an argument-based value transmis-
sion. This pass only needs to apply to functions containing
return statements; void return statements are removed. In
figure 5 (lower left) the single ReturnNode is converted into
an AssignmentNode where the left-hand side is a new vari-
able ret$0. It obtains its type from the function’s return
type and works as a temporary return variable that gets
assigned the respective value of every return statement.
Its uniqueness is ensured by the $ character, which is dis-
allowed for user-defined variable names. ret$0 is then in-
serted at the beginning of the function’s parameter list.
While function definitions have been isolated, function
calls with return values can appear as r_values in declara-
tions or assignments, or as part of expressions (e.g., condi-
tional expressions or function arguments). To consolidate
the two distinctions into a single form, FunctionCallHoist-
ing extracts embedded function calls from expressions and
hoists them into standalone declarations. The transforma-
tion creates a temporary variable (with a unique name via
Gensym) to store the return value. The original call site is
then replaced by a reference to this variable. The semantics
of the program remain largely unchanged, since the func-
tion execution site is the immediately preceding statement
and the order of execution is preserved (from left to right
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to top to bottom) with the caveat of missing short-circuit
evaluation. However, when hoisting from while-loop con-
ditions, functions with side effects can return different re-
sults across iterations. To mitigate this without resorting to
complex static analysis, FunctionCallHoisting reinserts the
function call inside the loop. An assignment of the tempo-
rary variable and the function call is appended at the end of
the loop body, ensuring its re-evaluation before each condi-
tion check.

Figure 5 (lower left) shows the clamp function call em-
bedded as an argument. The algorithm creates a new unique
variable ret0 assigning it to the call. Afterwards, the origi-
nal call site is replaced by a reference to reto. To facilitate
Variable Reuse, its short lifetime is marked by an artificial
scope containing the entire statement and the declaration.

Finally, the ReturnFunctionIsolation process converts func-
tion calls in assignments or declarations into standalone
statements so that the variables storing the return values
are passed as parameters. For assignments, the [_value is
passed as the first argument to the function call, effectively
replacing the assignment. For declarations, the assignment
is removed from the declaration and inserted as a separate
call, with a reference to the declared variable as a parameter.
This guarantees that every function call operates as an in-
dependent statement with its return value passed explicitly
through a parameter.

This is shown in the upper right of figure 5. The call is
removed from the declaration (line 4) and inserted below as
an isolated call. Subsequently, the variable ret0 is passed
as the first parameter and the declaration of reto loses its
value assignment. With this, the process of isolating func-
tion calls is complete.

4.4 Function Inlining

After the preceding compiler passes, all function calls ap-
pear as isolated statements, and function definitions have
been transformed such that they accept their return value as
a parameter. The functions now resemble native KSP func-
tions in that they no longer contain return statements and
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are invoked only as standalone statements. For some func-
tions (without parameters, not called in on init) this is suf-
ficient as they can now be treated as native KSP functions.
However, for functions with parameters, the FunctionInlin-
ing process is required to replace the function calls with
their corresponding function bodies and statically substi-
tute formal parameters with their actual arguments.

Conventional parameter passing techniques include pass-
by-value (copying the actual parameter value) and pass-by-
reference (directly accessing the original parameter without
copying). However, since KSP lacks parameter support, all
parameter bindings and evaluations must occur at com-
pile time. Thus, the substitution follows a pass-by-name
approach—textually substituting the actual parameter for
the formal one when it is used while preserving type infor-
mation for compile-time type checking.

The Functionlnlining process accepts pairs of function def-
initions and calls returning a Block,,; where the call has
been replaced by the function definition statements. During
inlining, the algorithm stores the arguments of each func-
tion call, associating them with the formal parameters by
their order. Subsequently, the definition is visited, copied,
and, within this copy, every reference to a formal param-
eter is substituted with its argument. Figure 5 shows this
process on the far right, where a mapping of the formal and
actual parameters is created. The function body is copied
and variables—such as the occurrence of value (replaced
by velo), max in an else if condition, and finally the re-
turn parameter ret$0—are substituted. Finally, the block is
inserted into the original code, replacing the function call.

Since function bodies may themselves contain other func-
tion calls, directly inlining every call could lead to redun-
dant processing. For this reason, a separate compiler pass,
ASTFunctionlnlining, performs a DFS traversal of the AST
ensuring that deeply nested function calls are inlined first,
followed by the next higher ones. The process checks if a
FunctionCallNodes has already been visited and if not, pro-
ceeds to visit its definition node. If it was visited, all nec-
essary function calls in that AST branch have been already
visited triggering its inlining. With this strategy, each func-
tion call is processed only once, keeping the overall time
complexity linear to the AST size (O(n)).

Smaller functions can be inlined more efficiently, without
the need to declare additional return variables, assignments
or use function isolation transformations. For example, the
recurring clamp function can also be represented in one line:

clamp(x, M) = max(0, min(x, M)) = i((x +M—|x—M)+ |x +M—|x— M\|)

This formula avoids the need to isolate the function. A
more efficient method is to replace the function call directly
where it is invoked, saving two lines of KSP code. We define
Expression-Only functions as those whose body consists
solely of a single ReturnNode. For these functions, inlining
simply involves substituting the parameters and inserting
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the return expression at the call site. In our implementation,
a dedicated process identifies all Expression-Only functions
and replaces them with their return value by calling Func-
tionInlining prior to further compilation steps.

Note. This implementation currently mirrors native KSP
by not supporting recursion. Under some circumstances, the
function isolation pipeline already uses native KSP function
syntax for parameterless functions, skipping the inlining
step. Future work may integrate KSP’s native “call” mech-
anism with a parameter stack for pass-by-value semantics,
potentially reducing code bloat and compilation times.

5 Implementation of Recursive Data Types

KSP provides three primitive data types: Integer, Real, and
String. However, this limited type set complicates the repre-
sentation of more complex data models, as even multidimen-
sional arrays must be flattened to one dimension to meet
the requirements of the KSP interpreter. In contrast, most
GPLs offer the ability to define custom data types (often
called “records”, “structures” or “structs”) containing multi-
ple fields of different types and group them under a common
name. Unlike arrays, where elements are referenced by in-
dices, record fields are addressed by named identifiers and
can have different types [21].

The objective is to enable the definition of abstract data
types with multiple fields, including the possibility for recur-
sive references, while also supporting methods operating on
the data, instance creation, and access chains. We explore
the implementation of automatic memory management, en-
abling dynamic creation and deletion of instances—all while
keeping the syntax close to existing KSP conventions incor-
porating proven concepts from established languages.

5.1 Syntax and Basic Concept

Records are defined between struct and end struct key-
words, with field declarations performed using KSP’s usual
declare syntax. Fields may include variables, arrays, and
multidimensional arrays as primitive or abstract data types.
To treat records as first-class types, the type system is ex-
tended with Object types (representing structs) registered
during parsing. Methods can be defined in a Python-like syn-
tax, where each one must include self to refer to the current
object, while the constructor isnamed __init__andis auto-
matically invoked upon instance creation. Struct instances
are referenced by a dedicated pointer variable of type Ob-
ject and created by invoking the struct name as a function,
with field values passed as arguments. If no constructor is
defined, a default constructor is provided, which takes ar-
guments for all fields in their declared order. Uninitialized
pointer variables default to nil, which gets lowered to -1.
Field and method access is performed using the dot opera-
tor.
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1 declare this_list: List :=List(42, nil)
l I"“ | 2 declare that_list: List

1 struct List

2 declare value: int -
3 declare next: List List: allocatlnnl !
4

5 function __init__(self, value: int, next: List) List: value I
6 self.value := value T
7 self.next := next Lls"‘ml zl
8 end function

9 end struct

that_list := List(39, List(40, List(41, this_list)))

(a) An example of a recursive struct definition.

List:MAX_ STRUCTS

(b) The simulated “heap” arrays.

message(that_list.next.value)

(c) Instantiating a struct and accessing its fields.

Figure 6. Implementation of Abstract Data Types on the example of a recursive list.

Dynamic allocation of struct instances is simulated by
implementing a “heap” using arrays, where each index acts
as a memory address holding one struct instance. Figure 6
illustrates this using a recursive list with two fields: value
representing the value of the current element, and next, a
pointer of type Object referring to the next list element.
The fields are transformed into the heap arrays of size
List :: MAX_STRUCTS, where a List instance is composed
of all elements at a specific index across the arrays. Each
value in the List::next array refers to the index of the
next instance. In figure 6b, the element at index @ points to
index 2 (holding the value 40), while List :: next[2] points
to index 5, enabling recursive structures.

Allocation is handled by the constructor (Fig. 6c, right)
locating free memory in the allocation array and stor-
ing the field values in the corresponding arrays. To do
that, it searches for the first index with value 0 (using
the KSP command search). If no free memory is found,
List :: MAX_STRUCTS instances already exist and an error
message is displayed. Otherwise, the free index is assigned
to List:: free_idx and, after storing the field values, re-
turned. Figure 6¢ shows an assignment where the pointer
this_list is initialized with a List instance of value 42.
The constructor sets the pointer to the index where the in-
stance is stored. Connected data structures can be formed
by passing constructors as arguments to other constructors
(line 3). Access to nested objects is achieved by transform-
ing fields in between the dot operators into arrays and also
nesting them.

At the AST level, two key transformations are applied:
transforming abstract data type interfaces (represented
by StructNodes) and access chains (represented by Access-
ChainNodes). A StructNode encapsulates the type name, an
ordered list of DeclarationNodes for fields, and a list of Func-
tionDefNodes for methods, along with member and method
tables for fast lookup. Each AccessChainNode abstracts a
sequence of fields and methods delimited by the dot oper-
ator, storing the individual elements as an ordered list of
ReferenceNodes or FunctionCallNodes.
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“self.”

5.2 StructNode Transformations

The transformation of StructNodes follows a compilation
pipeline as illustrated for the List struct in Figure 7. First,
DesugarStruct restructures the AST for correct field/refer-
ence linking by BuildLexicalScope. It verifies that all meth-
ods are defined within the struct namespace, contain self
as the first parameter and that field references start with
. Furthermore, it generates a constructor if absent.
To link fields and references by common names, fields and
methods are prefixed (e.g., List ::) for uniqueness in the
global scope. Within the struct scope, ambiguities between
access chains (e.g., self.next.next.value) and field ref-
erences (e.g., self.value) are resolved via a member table.
If a name appears in the table, the reference is maintained
as a ReferenceNode and prefixed; otherwise, it is converted
into an AccessChainNode. The constructor’s self parameter
is removed, aligning the number of parameters in calls with
their definitions.

Next, PreLoweringStruct adds compiler-specific variables
to the StructNode, including the allocation array, the
free_idx variable, and memory management data (Section
5.4). The modifications are shown in Figure 7 (center). If
no array fields exist, the maximum number of allocatable
struct instances (MAX_STRUCTS) is set directly. Otherwise,
their sizes are taken into account, with the largest serving
as the divisor in the calculation. Consider a struct with two
array fields: one with size n, the other with n — 1. By the
end, all fields are extended by the heap dimension m ne-
cessitating that all dimensions of a field array combined do
not exceed MAX_STRUCTS (M). Therefore, PreLoweringStruct
defines a max function to determine the largest array and
compute the m via integer division, calling max in a nested
manner if more than two arrays exist. Here, this leads to
m = M /max(n,n — 1) allocatable instances.

The LoweringStruct algorithm eliminates StructNodes
from the AST by converting struct fields and their refer-
ences into higher-dimensional arrays, moving methods to
the global function scope, and adjusting constructors for
proper memory allocation. This is achieved by applying
DimensionExpansion (Section 3.4), adding an extra heap
dimension. For example, a scalar field A is transformed
into A[m], a one-dimensional array B[S] becomes B[m, S],
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struct List
declare
declare
declare
declare

1 struct List 1
2 declare value: int 2

2 self :
3 declare next: List

List

List::

function __init__(self, value: int, next: List) 5 List::value :

const List::MAX_STRUCTS := MAX_STRUCTS
allocation[List::MAX_STRUCTS]:int[]
int

Mathias Vatter and Sebastian Erdweg

1 on init

2 declare
declare
declare
declare

const List::MAX_STRUCTS := MAX_STRUCTS
List::allocation[List::MAX_STRUCTS]:int[]
List::value[List::MAX_STRUCTS]: int[]
List::next[List::MAX_STRUCTS]: List[] := (nil)

6 self.value := value 6 declare List::next : List 1 L :
7 self.next := next 7 declare List::free_idx: int 6 declare L}st::free_ldx: int
8 end function 8 declare List::stack_top: int 7 declare List::stack_top: int
9 end struct 9 declare List::stack[List::MAX_STRUCTS]:int[] 8 declare List::stack[List::MAX_STRUCTS]:int[]
10 9 end on
11 function List::__init__(value : int, next: List) 1
DesugarStruct 12 List::value := value ! 11 function List::__init__(value: int, next: List)
Struct List 13 List::next := next 12 List::free_idx := search(List::allocation, 0)
; declare self : List *‘ end function 13 if List::free_idx = nil
declare List::value : int s end struct 14 message("MemError: No free memory for allocation.")
declare List::next : List 15 end if
16 List::allocation[List::free_idx] :=1
functjonAll_ist:: init__(value : int, next: List) PreLoweringStruct LoweringStruct 17 L%s : alue[%ist::freeTidx] :=value
List::value :=value 18 List::next[List::free_idx] := next

8 List::next := next
9 end function
10 end struct

19 return List::free_idx
20 end function

Figure 7. The transformation processes of a StructNode illustrated using the example of a List struct. Depicting the original
struct definition, the struct after DesugarStruct, after PreLoweringStruct and after LoweringStruct.

this_list.next.next.value

this_list.get_next().value

TypeCheckingAccessChain

this_list.next.next.value

this_list.get_next().value

List::value[List::next[List::next[this_list]]]

List::value[List::get_next(this_list)]

LoweringAccessChain

Figure 8. Transformation processes of an AccessChainNode illustrated using the example of a List struct.

and an n-dimensional field C becomes C[m, Sy, ..., S, ], with
m representing the allocatable instances. Field references
outside the constructor are expanded by one dimension
and indexed using the struct’s self variable, those inside
the constructor are indexed with List::free_idx. The
constructor is transformed and the search function, the
subsequent if statement, and the setting of the allocation
array are added. Ultimately, all methods are moved into
global scope and the remaining arrays and constants to the
on init callback.

5.3 AccessChainNode Transformation

Since some legacy codebases might use the dot operator as
part of a naming convention, access chains cannot be con-
structed during parsing. Instead, during BuildLexicalScope,
variable references or function call nodes containing dot op-
erators are inspected. If the full identifier is not declared as
a variable, it is split into parts and converted into an Access-
ChainNode. Nested access chain nodes are recursively flat-
tened into a single, linear structure for further processing.
The following transformation steps are shown in figure 8.
Assuming all variable declarations and function param-
eters are annotated, type verification uses the declaration
pointers gathered during BuildLexicalScope. Note that only
the first member of an access chain carries a declaration
pointer and therefore type information. TypeCheckingAc-
cessChain returns an AccessChainNode,,; with complete
type details by iteratively taking the type of the preceding
member, getting the member table of the object, and infer-
ring the type of the next member from it. If a member is
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missing or if a primitive type was used, an UndeclaredField-
Exception is thrown. For function call members, the struct’s
method table is searched and the method’s return type used
for further inference. The algorithm terminates once the
end of the access chain is reached.

The final lowering phase converts an AccessChainNode;,
into a nested structure of arrays or function calls. First, all
pointer and array references are extended by one dimen-
sion and prefixed with the type of their predecessor. Con-
sider figure 8 where this_list is the first element. It re-
mains unchanged since it refers to a pointer variable in the
same scope. The next member (next) is prefixed with the
type of this_list becoming List ::next[null]. This pro-
cess continues along the chain. Subsequently, the nesting
is performed by an additional iteration, where the previous
member always serves as the index or argument (for method
calls) for the next member. For instance, the access chain
A.B.C is transformed into C[ B[ A]]. If a field is already an ar-
ray, it is similarly extended by one dimension, with the pre-
vious node inserted as an additional index, so that A.B[42].C
becomes C[B[ A, 42]].

5.4 Reference Counting

To enable automatic memory management, we implement
a reference counting strategy that tracks and deallocates
unreachable objects in real time. Traditional garbage collec-
tion mechanisms like Mark-Sweep are unsuitable for our use
case due to their stop-the-world nature [9][10]. Instead, con-
tinuous deallocation distributes memory management costs
throughout the runtime [10]. We track reference counts via
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struct List
declare note: Note- -
declare next: List
end struct

List::stack[List::stack_top] := self
inc(List::stack_top)

o—
—> List I List — Nil

¥ 12
O | Prone

1 function List::__decr__(self: List, num_refs: int)
declare current: List :=self
while current # nil
List::allocation[current] -= num_refs
if(List::allocation[current] > 0)
current := nil
continue
end if
List::allocation[current] := 0

struct Note
declare pitch: int
declare velocity: int
end struct

while List::stack_top > 0
dec(List::stack_top)
self := List::stack[List::stack_top]

if self = nil
continue
1 end if

List::allocation[self] -= num_refs

if List::allocation[self] > 0
continue

end if

List::allocation[self] := 0

function List::__decr__(self: int, num_refs: int)

while List::stack_top > 0 or Node::stack_top > 0
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while Node::stack_top > 0
dec(Node: : stack_top)
self := Node::stack[Node: :stack_top]

this_list
12
List ‘

ot

Node
— o>

List List

if self = nil
continue
end if

Node: :allocation[self] -= num_refs
if Node::allocation[self] > 0
continue

end if ?

Node: :allocation[self] = 0 i [
] Node Node

if Node::left[self] # nil
List::stack[List::stack_top] := Node: :left[self]
inc(List::stack_top)
y end if
] if Node::right[self] # nil

Nil Nil H Nil Nil

[

1 self := current

current :=nil if List::next[self] # nil

inc(Node: :stack_top)

Note::__decr, List::note[self], 1)f¢ -+~~~ :
[ __decr_( [self], 1}« end if

current := List: :next[current]

List::__del__(self)
List::__del__(self) end while
end while

end function

1 Node: : stack[Node: :stack_top] := List: :next[self]

List::stack[List: :stack_top] := Node: :right [self]
inc(List::stack_top)
end if

struct List
declare val: int
declare next: Node
end struct
Node::__del__(self)
end while

struct Node
declare val: int
declare left: List
declare right: List
end struct

end while
. end function

(a) Linear Direct Recursion using (b) Non-Linear Indirect Recursion using List and Node as an Example, Left: Decrease Method of List,

List as an Example

Right: List ADT Example and directed graph of a List Instance.

Figure 9. Examples of different Decrease Methods for recursive data types

the existing allocation arrays. When an object is created, its
allocation index is set to 1. Any subsequent references to
that object increment the count by 1, removing a reference
decrements it. Once a count hits 0, the object is deallocated,;
its directly linked objects then undergo the same decre-
ment, potentially triggering a cascading deallocation. Ref-
erence counting methods are generated for each struct. The
__incr__ method checks that the object’s index is not nil
before incrementing its count, while __decr__ decrements
it and calls the __del__ method to reset the object’s fields
when the count drops to 0. Because KSP does not support
recursive functions, recursive deallocation must be imple-
mented iteratively. We distinguish among three recursion
types: (1) Linear Direct Recursion applies to structures with
at most one recursive field and can be handled with a simple
while loop. It is suitable for non-recursive structs as well.
(2) Non-linear Direct Recursion involves multiple recursive
fields pointing to the same type and requires a stack; and
(3) Non-linear Indirect Recursion involves recursive fields of
different types and requires stacks for all involved structs
along with nested loops.

To determine the recursion type, a cycle detection algo-
rithm traverses all structs reachable from a given StructNode
via DFS, gathering all reached recursive data types into a set.
An empty set indicates a non-recursive object, a singleton
set implies linear direct or non-linear direct recursion, and
a set with multiple elements indicates non-linear indirect
recursion.

Figure 9 illustrates exemplary Decrease Methods for two
of the recursion types, with their basic architecture anno-
tated by numbered blocks.

Consider the Linear Direct Recursion case using the List
struct, where each element holds a non-recursive Note
object (with pitch and velocity), so no additional data
structure (e.g. stacks) is needed when iteratively traversing
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(Fig. 9a). Block 1 shows the main while loop iterating un-
til current becomes nil-with current holding the value
of the next field during a cascade of deallocations. Block
2 decrements the reference count of the current object; if
the count remains above zero, current is set to nil and
the loop iteration is terminated immediately. In block 3, the
current object is temporarily stored in self before current
is reset, ensuring that the Delete method can later be ap-
plied to self even if current changes. Block 4 processes
the struct’s fields: non-recursive fields (such as note) are
deallocated via their own Decrease methods, while recursive
fields update current to continue the traversal. The explicit
assignment of current to nil guarantees termination if no
new value is assigned, and the subsequent call to Delete
resets all fields to prevent infinite loops in cyclic structures.

For Non-linear Indirect Recursion, where multiple data
structures form a cycle, the compiler generates a more com-
plex approach. Each participating struct is assigned its own
stack, and a central loop coordinates these stacks by iter-
ating as long as at least one is non-empty. For instance,
as illustrated in Figure 9b, a List struct may reference a
Node via its next field, while the Node in turn references
a List. The two inner loops (Block 1) iterate over their
respective stacks, decrementing reference counts (Block 2)
and pushing non-nil recursive fields onto the stacks (Block
3). Afterwards, the Delete method is called to reset the cur-
rent instance. Iteration continues until the respective stack
is empty. The central loop, which combines the stack sta-
tus, ensures that both stacks are processed alternately. This
mutual handoff guarantees that all objects in the cycle are
traversed and deallocated without leaving any unresolved
references. With the Non-linear Direct Recursion case, just
one stack needs to be iterated over.

To determine when to invoke reference counting meth-
ods, we introduce the PointerScope algorithm. It inserts Incr-
RefNode and DecrRefNode nodes into the AST. Specifically,
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when a pointer variable (of type Object) is assigned a new
reference via an AssignmentNode or DeclarationNode, the
reference count is increased—unless the r_value is nil or
a constructor (which already sets up the allocation). Before
reassigning a pointer variable, the count is decreased (with
a nil check). When a local pointer variable’s scope ends, a
Decrease call is appended, by a stack-frame tracking pointer
variables, similar to the BuildLexicalScope approach.

However, temporary objects (created within access chains
or as function call arguments) are not stored in pointer vari-
ables. Although their constructors set the reference count to
1, no corresponding Decrease is applied under the current
implementation. After FunctionCallHoisting, these tempo-
rary objects are assigned to variables, but since the lowering
phase already converted all Object types to Integer types, the
PointerScope adjustments no longer apply. For this reason,
temporary constructors are marked previously by check-
ing if the constructor appears under the aforementioned
conditions. Immediately after hoisting, the TemporaryPoint-
erScope algorithm traverses the AST to insert Decrease calls
for the marked objects operating similarly to PointerScope
by maintaining a stack of variables.

5.5 ADTs, Asynchronous Operations & Cyclic
References

As previously shown, KSP variable consistency is not guar-
anteed when asynchronous operations trigger additional
callbacks during waiting periods. This was resolved for
local variables via Dimension Expansion. Functions that do
not perform asynchronous operations are inherently thread-
safe, meaning that local variables and all automatically gen-
erated reference counting methods remain consistent.

Even though constructors can be auto-generated, user-
defined constructors may contain asynchronous operations,
which can lead to errors when returning memory addresses.
For example, if a wait command in a constructor triggers
a callback before it completes, the global free_idx may be
overwritten, causing loss of the first object’s memory ad-
dress. Thus, constructors must not include asynchronous op-
erations; for any such usage, we raise an error.

Global pointer variables present a similar risk. Since they
are not subject to Dimension Expansion, assigning a global
pointer within an asynchronous callback can lead to in-
correct reference counts. For instance, if a global pointer
is assigned after a wait command, the preceding Decrease
method might operate on a new object rather than the orig-
inal, leaving its reference count unchanged and prevent-
ing deallocation. Prohibiting asynchronous assignments to
global pointers is challenging without sacrificing flexibility;
therefore, we issue a warning in this case recommending
using local pointers instead.

Manual memory management in our system addresses
cyclic reference issues that pure reference counting can-
not resolve. Rather than implementing a hybrid garbage
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collector—which would add unwanted overhead—we sup-
port manual deallocation using the reserved word delete.
When a delete statement is encountered, it is transformed
into a call to the object’s Decrease method (with a nil check
and its full reference count as argument), and the pointer
is removed from the PointerScope stack frame to prevent
duplicate deallocation.

6 Conclusion and Future Work

This paper presented transformations that extend the Kon-
takt Script Processor with higher-level abstractions. Key
contributions include preserving variable state, restructur-
ing variable scoping by reusing local variables, a function
transformation pipeline allowing for parameterized func-
tions with return values and an abstraction mechanism for
modeling recursive data structures with reference counting.
These solutions have been integrated into a preprocessing
compiler framework that produces efficient KSP code.

Our experience confirms that even a severely restricted
DSL can be augmented with modern programming abstrac-
tions by tailoring transformations to its specific idiosyn-
crasies and investing significant engineering effort.

While formal user studies are pending, initial feedback
from KSP developers using early versions of the compiler
has been positive, particularly emphasizing the enhanced
codebase maintainability. Local variables, conveniently
declarable at their point of use, reportedly improved code
organization and readability. Variable Reuse further encour-
aged their liberal adoption by mitigating concerns about
generating an excessive number of global declarations. The
ability to declare variables locally within each scope re-
solved prior issues, such as conflicting iterator variables
(e.g., 1) in nested loops or functions and worrying about in-
advertent variable name interference across scopes, thereby
facilitating management of large projects. Parameterized
functions were also lauded for their contribution to modu-
larity, with their direct usability in expressions simplifying
code and boosting reusability.

Nonetheless, limitations remain. Future work will focus
on optimizing memory usage and reducing code overhead
through refined static analyses (for lifetime estimation and
heap dimensioning) and closer integration of native KSP
functions via a parameter stack. Further investigation will
target more flexible memory management to minimize man-
ual deallocation and explore partial recursion support to
simplify data structure traversal (currently only possible
iteratively). Finally, performance studies and broader com-
munity testing are essential to evaluate the practical impact
of these abstractions, their real-world adoption, and the
overall interest in deviating from standard KSP scripting
practices.
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