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Abstract
We propose mono types, a new abstraction for programming Datalog. Mono types behave like
first-class containers that can be stored in relations and to which elements can be added decentrally.
But, mono types are more than just containers: They provide a read operation that can yield any
result as long as it monotonically grows with each added element and is independent of the order
in which elements are added to the container. This design permits a wide range of mono types
(e.g., sets, maps, and aggregations), yet guarantees mono types can be integrated into Datalog
without jeopardizing Datalog’s least fixed-point semantics. We develop a theory for mono types,
which includes constructions for complex mono types, equivalence relation for mono types, and
properties about semantics-preserving mono-type transformations. This theory ensures sound
Datalog integration and justifies crucial compiler optimizations for mono types. Together, these
techniques demonstrate that mono types provide abstraction without regret: We demonstrate in
two case studies that programs become easier to write with mono types, while their performance
also improves drastically.
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1 Introduction

Datalog is a programming language for processing structured and cyclic data. Datalog’s
distinguishing feature is its efficient fixed-point semantics: A program runs until no more
deductions are possible, exploiting that programs behave monotonically. Therefore, when
processing graphs (as in data-flow or social-network analysis), Datalog programmers can
forgo data structures for graph traversals (e.g., visited nodes, queues, stacks) and explicit
termination conditions. Instead, the termination is managed by the fixed-point semantics.
However, this does not mean all Datalog programs are equally efficient.

Consider a Datalog program that collects the variables shared between two syntax trees:

sharedVar(v) :- e1 = Plus(Plus(Var("x1"),Var("x2")),Var("y")),
e2 = Plus(Var("y"),Plus(Var("z1"),Var("z2"))),
hasVar(e1, v), hasVar(e2, v).

hasVar(e, v) :- ?Var(e,v).
hasVar(e, v) :- ?Plus(e,lhs,rhs), hasVar(lhs,v).
hasVar(e, v) :- ?Plus(e,lhs,rhs), hasVar(rhs,v).

Predicate sharedVar constructs two syntax trees e1 and e2, computes their variables using
hasVar, and returns those variables v that occur in both expressions. Predicate hasVar traverses
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the syntax tree to collect variables. We write ?Var(e,v) to pattern match e as a Var, extracting
the variable name v. In the end, hasVar computes a relation that associates each expression
with each variable contained in the expression. Thus, hasVar will derive 8 tuples for each of e1

and e2, even though they only contain 3 variables each. In general, an expression tree of size
n will contain at most (n + 1)/2 variables, yet hasVar computes up to ((n + 1) · log (n + 1))/2
tuples. That is, our program performs asymptotically worse than necessary.

The problem of our program is that it propagates variables along the tree, generating a
separate tuple for an intermediate node. But the problem is more general than that. For
example, consider a graph analysis of a social network, where we want to find Alice’s most
popular friend.

mostPopFriend(p, max((p, n))) :- n = count(connectedWith(p,_)).
mostPopFriend(p1, max((p, n))) :- connectedWith(p1, p2), mostPopFriend(p2, (p, n)).
main(p) :- mostPopFriend("Alice", (p, _)).

This program uses recursive aggregation to select the person p with the most connections
n. Moreover, since connectedWith may span a cyclic graph, the program relies on Datalog’s
fixed-point semantics, producing a single most popular person in the end. Again this program
derives many more tuples than necessary. Initially, mostPopFriend contains tuples (p, (p,n)) for
each person p and only gradually will the most connected person become known throughout
the graph.

In this paper, we propose a Datalog extension that not only eliminates this overhead
but also improves the programmability of Datalog. Specifically, we introduce first-class
containers for Datalog that enable a new programming pattern: Rather than redundantly
propagating information from one node to another, we can propagate a single container to
collect all information. Conceptually, our containers are mutable collections that can grow
over time. Let us revisit the first example:1

sharedVar(v) :- e1 = Plus(Plus(Var("x1"),Var("x2")),Var("y")),
e2 = Plus(Var("y"),Plus(Var("z1"),Var("z2"))),
hasVar(e1, v), hasVar(e2, v).

hasVar(e, v) :- col = new set[string], collectVar(e,col), read(col) = v.
collectVar(e, col) :- ?Var(e,v), col += v.
collectVar(e, col) :- ?Plus(e,lhs,rhs),collectVar(lhs,col),collectVar(rhs,col).

Our extension comprises three new constructs. First, we can create distinct containers such
as new set[string] in hasVar. Second, we can add elements to the container such as col += v

in collectVar. Third, we can read from a container read(col). When executing this program,
only the container needs to be propagated but not the variables, leading to considerably
fewer tuples. But, actually, our containers are much more flexible than this example may
suggest.

Our extension supports a wide variety of “containers”, which only need to adhere to a
single monotonicity property for a user-defined partial order ⊑.

∀c. ∀i. read(c) ⊑ read(c += i)

1 Datalog requires range-restrictedness: Each variable in the head of a rule must be positively bound in
the body of the rule. In this paper, example Datalog programs sometimes violate range-restrictedness
when a relation’s head variable is intended to receive input from the relation’s call-sites. This is the
case for head variable col of collectVar, which is bound by the call in hasVar. Our Datalog code can
be systematically rewritten to satisfy range-restrictedness using the magic set transformation. We take
the liberty of showing the “wrong” code for readability.
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That is, adding elements i to a container c will only increase the subsequent reads. This
property is sufficient for ensuring that containers are compatible with Datalog’s fixed-point
semantics. For the set container from above, the monotonicity property holds because read

produces the set of added elements. But we do not need to collect elements, we may also
aggregate them. For example, a sum aggregation of natural numbers satisfies the monotonicity
property: read produces the sum, which grows with every addition. Since monotonicity is
the only constraint, we call our container extension mono types. Mono types not only can
improve performance, they also provide a new form of abstraction. For example, in our
social-network program, we can add people with their friendship count to a mono type, and
separately decide which mono-type definition to use:

collectFriend(p, col) :- col += (p, count(connectedWith(p,_))).
collectFriend (p1, col) :- connectedWith(p1, p2), collectFriend(p2, col).
mostPopFriend(p, pop) :- max = new retain_max, collectFriend(p, max), read(max) = pop.
leastPopFriend(p, pop) :- min = new retain_min, collectFriend(p, min), read(min) = pop.

We first demontrate the algebraic theory of mono types. A well-founded theory of
mono types is crucial because violations of monotonicity will lead to undefined Datalog
behavior. In particular, we develop mono-type constructions that enable us to develop
complex mono types based on simpler ones. For example, a map mono Map[K,V] is parametric
in a mono type for values V and combines all values that have the same key. This way we
can construct mono types for multi maps new map[K, Set[V]](new set) or for grouped maxima
new map[K, int](new max). Our theory ensures that all map constructions yield valid mono
types. We have formalized the algebraic theory of mono types and verified the correctness of
mono-type constructions in the proof assistant Rocq, and the code is available open-source.1

We then show how mono types can be integrated into Datalog systems. Technically, we
compile mono types to Datalog aggregations. However, this induces a considerable overhead
for mono types that are containers, such as sets and maps. Therefore, we develop the theory
of mono-type equivalence and mono-type functors, allowing us to convert between equivalent
mono-type definitions. We use this theory to prove certain optimizations sound, and add
them to our Datalog integration. Finally, we evaluate the programmability and performance
of mono types using case studies. In summary, we present the following contributions:

We develop and mechanize the algebraic theory of mono types and mono-type constructions
in Rocq.
We integrate mono types into Datalog by translation to user-defined aggregations.
We formalize the theory of mono-type equivalence and mono-type functors and use it to
develop sound compiler optimizations for the set and map mono types.
We show that mono types improve Datalog’s programmability and evaluate their per-
formance.

2 A Theory of Mono Types

In the introduction, we have seen some motivating examples for using mono types: to collect
values and to aggregate them. Since mono types can occur as part of Datalog’s fixed-point
semantics, it is important to ensure Datalog remains well-founded. To this end, we develop
and formalize a specification for mono types and instantiate the specification with various
examples. We then present generic constructions for mono types, allowing us to build up

1 https://gitlab.rlp.net/plmz/artifacts/mono-types-ecoop25
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complex mono types from simpler ones. We have mechanized the theory of mono types and
the constructions in Rocq and use Rocq’s notation in our presentation.

2.1 Mono Types
Conceptually, mono types are stateful containers. However, mono-type containers are
restricted in three important ways: First, elements can only be added to a mono type
but never removed or replaced. Second, the content of a mono type can only be observed
monotonically. And third, the observation of a mono type is independent with the order of
added elements. We represent the interface of mono types as a type-level record in Rocq:

Record MonoAPI M I O ‘{PartialOrder O} : Type ··=
{ create : M I O ; add : M I O → I → M I O ; read : M I O → O
; mono_law : forall m i, read m ⊑ read (add m i)
; ord_indep : forall m i1 i2, read (add (add m i1) i2) = read (add (add m i2) i1)
}.

Mono instances have type M I O, where I is the type of added inputs, and O is the type of
the read observations. Mono instances can only be created through functions create and add,
which means all mono instances are sequences:

m0 = create, m1 = add m0 i1, · · · mn = add mn−1 in

Users can observe the state of a mono instance at any time using read, but with two
restrictions:

(i) Reads on a later mono instance produce larger values than reads on an earlier mono
instance from the same sequence:

∀ i, j. i < j =⇒ read mi ⊑ read mj

In the interface of mono types above, we ensure this property by requiring a monotonicity
law mono_law. This law states that each individual add increases the observable output
with respect to a fixed partial order for O.

(ii) Swapping the order of inputs does not affect the updated value of a mono instance:

∀ i1, i2. read (add (add mj i1) i2) = read (add (add mj i2) i1)

We ensure the order independence through the law ord_indep in the interface.
The monotonicity law, order independence law, and the lack of any removal operations are
the reason that mono types integrate well with Datalog as we will discuss below.

One notable omission from MonoAPI is the internal state of mono instances. While it is
clear that mono types must use internal state to carry information from an add to a read,
the internal state cannot be observed by users directly. Instead, the internal state is only
accessible while defining a mono type, for which we provide a dedicated interface:

Record Mono ST I O ‘{PartialOrder O} : Type ··=
{ init : ST ; add : ST → I → ST ; read : ST → O
; mono_law : forall (st : ST) (i : I), read st ⊑ read (add st i)
; ord_indep : forall s a1 a2, result (add (add s a1) a2) = result (add (add s a2) a1)
}.

In contrast to MonoAPI, interface Mono has an additional type parameter ST, which exposes the
type of the internal state. Otherwise, the two interfaces are almost identical and each Mono

gives rise to an implementation of MonoAPI by setting M I O = ST and using init for create. All
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our examples and constructions use the Mono interface, but it is important to remember that
the internal state will not be visible to users of MonoAPI, which means we can exchange the
implementation internals of a mono type without affecting users.

As first example, consider a mono type nat_sum_mono that computes the sum over naturals:

Definition nat_sum_mono : Mono nat nat nat ··=
{| init ··= 0 ; add s n ··= s + n ; read s ··= s |}.

For nat_sum, the internal state, input, and output all are of type nat. We start with an initial
state 0, add each new input to it, and allow the sum to be observed directly. This mono type
satisfies the mono_law for the natural order of nat.

Our second example is retain_max_mono, which we used in Section 1 for the most popular
person in a social network:

Definition retain_max_mono A : Mono (option (A, nat)) (A, nat) (option (A, nat)) ··=
{| init ··= None
; add s i ··= match s, i with

| None, _ ⇒ Some i
| Some (a1,n1), (a2,n2) ⇒ if n1 >? n2 then Some (a1,n1) else Some (a2,n2)
end

; read s = s
|}.

This mono type is more interesting and requires distinct types for input and output. The input
is a pair (A,nat), which can be understood as a weighted A. The mono type retains that input
A with the highest weight. However, initially no A value is known yet, which is why we employ
an option type for the internal state and output. Mono type retain_max satisfies the mono_law

for the ordering where None ⊑ Some (a, n) for all a and n, and Some (a1, n1) ⊑ Some (a2, n2) if
n1 ≤ n2.

In both previous examples, the read function was a simple identity. We include read in
our design because it allows us to isolate a post-processing step. For example, we can define
a set mono that collects and produces a set of all inputs. However, internally this mono type
uses a list representation for constant-time add and only converts the list to a set in read:

Definition set_mono1 A : Mono (list A) A (set A) ··=
{| init ··= nil ; add s a ··= a :: s ; read s ··= set_from_list s |}.

The internal state has no obvious ordering, but the output set satisfies the mono_law based
on the partial order (⊆) of set inclusion. Technically, it is not necessary to isolate the read

projection, but it makes mono types easier to define and reason about. In principle, we can
merge the post-processing done by read into the other functions if we use the internal state
to also retain the post-processed output:

Definition set_mono2 A : Mono (list A, set A) A (set A) ··=
{| init ··= (nil, set_from_list nil)
; add st a ··= let (l,_) ··= st in (a :: l, set_from_list (a :: l))
; read st ··= let (_,s) ··= st in s

|}.

Here, the internal state contains both the list of inputs and the projected set representation.
We update the projected set after each add, but only use it in read. For this particular mono
type, we can actually improve the definition by fusing add and set_from_list:

Definition set_mono A : Mono (set A) A (set A) ··=
{| init ··= empty_set ; add s a ··= set_add a s ; read s ··= s |}.

ECOOP 2025
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This is our final mono type for sets (set mono for short). We start with an empty set and add
input elements to that set directly. While we could have started with this mono type, note
this: All three mono types implement the same MonoAPI. Semantically, the three mono types
are interchangeable because they only differ in their internal state, which is not observable.
We will exploit such interchangeability in Section 4 to optimize usages of mono types.

The set mono is actually a special case of an entire class of mono types. A bounded
semi-lattice has a bottom element and a least upper bound operator lub. Each bounded
semi-lattice uniquely determines a partial order:

a1 ⊑ a2 ⇐⇒ lub a1 a2 = a2

Each bounded semi-lattice gives rise to mono type, which satisfies the mono_law:
Definition lattice_mono A ‘(BoundedSemiLattice A) : Mono A A A ··=

{| init ··= bottom ; add ··= lub ; read a ··= a |}.

This is an important class of mono types because lattices are heavily exercised in Datalog. In
particular, lattice-based aggregation [8, 13] allows Datalog programs to implement data-flow
analyses over custom lattices. The lattice mono can also easily accomodate widening, for
example, using a unary widening operator in read.

Lastly, we want to provide an example where the internal state of a mono type is not
monotone, but the output is. Consider the following mono type where the internal state
changes in accordance with the collatz function:
Definition collatz_fun n : {n : nat | 0 < n} ··= if is_even n then n / 2 else 3 * n + 1.
Definition collatz_mono A (n : {n : nat | 0 < n}) : Mono nat A bool ··=
{| init ··= n ; add st _ ··= if st =? 1 then 1 else collatz_fun st ; read st ··= st =? 1 |}.

The collatz_mono starts at a given positive number n. At each call of add, we forward the
state to the next collatz number, unless we already reached 1. The output of the collatz_mono

is true if the number of calls to add is equal to or exceeds the total stopping time of n, that is,
if the sequence has reached 1 yet. For example, collatz_mono 12 will exercise the following
sequence for the first 9 calls of add: 12, 6, 3, 10, 5, 16, 8, 4, 2, 1. Any subsequent call of add

will keep the state at 1. Nonetheless, add is not monotone: the state fluctuates up and
down indeterminately. However, the output of mono type satisfies mono_law for the order
false ⊑ true.

2.2 Mono-Type Constructions
We have seen a number of mono types in the previous subsection. However, it is not necessary
to construct mono types individually, including the necessary proof of mono_law . Instead,
users can use generic constructions that we discovered for creating complex mono types from
simpler ones. We start with constructions that compose multiple mono types.

Sum mono. In Section 1, we used a mono type to collect all variables in an expression tree.
Consider we also want to collect the integer literals the tree contains. Of course, we could
traverse the tree twice, once collecting variables and once collecting literals, but this entails
a memory and run-time overhead. It is more efficient to use a single mono type that can
collect both kinds of data. We can construct such a mono type using the sum construction:2

2 Note the record accessors in Rocq: init m1, add m1, and read m1 refer to the respective fields of the
mono-type record m1.
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Definition sum_mono (m1 : Mono ST1 I1 O1) (m2 : Mono ST2 I2 O2)
: Mono (ST1 * ST2) (I1 + I2) (O1 * O2) ··=

{| init ··= (init m1, init m2)
; add s a ··= let (s1, s2) ··= s in match a with

| inl a1 ⇒ (add m1 s1 a1, s2)
| inr a2 ⇒ (s1, add m2 s2 a2)
end

; read s ··= let (s1, s2) ··= s in (read m1 s1, read m2 s2)
|}.

A sum mono is parametric in mono types m1 and m2, and it retains both of their internal states
ST1 * ST2. The sum mono’s input is the sum type I1 + I2 and the add function dispatches to
either m1 and m2. We can use the sum mono in Datalog as follows:
main(e) :- col = new sum(new set[string], new set[int]), collectInfo(e, col).
collectInfo(e,col) :- ?Var(e,v), col += (inl v).
collectInfo(e,col) :- ?Num(e,n), col += (inr n).
collectInfo(e,col) :- ?Plus(e,lhs,rhs),collectInfo(lhs,col),collectInfo(rhs,col).

Product mono. While the sum mono dispatches its input, a product mono obtains inputs
for both contained mono types. For example, in a social network, we may want to find
the most popular person while also collecting all people in a set. The product mono
new prod(new retain_max, new set[Person]) can deliver this behavior:
Definition prod_mono (m1 : Mono ST1 I1 O1) (m2 : Mono ST2 I2 O2)

: Mono (ST1 * ST2) (I1 * I2) (O1 * O2) ··=
{| init ··= (init m1, init m2)
; add s a ··= let (s1, s2) ··= s in let (a1, a2) ··= a in (add m1 s1 a1, add m2 s2 a2)
; read s ··= let (s1, s2) ··= s in (read m1 s1, read m2 s2)

|}.

Note how each input pair (a1,a2) is split up and forwarded to m1 and m2 in add. The definitions
init and read are identical to the sum mono.

Input functors. We can also construct various mono types through functors. The simplest
class of functors only affects the input of a mono type:
Definition fmap_input_mono (f : I2 → I1) (m : Mono ST I1 O) : Mono ST I2 O ··=

{| init ··= init m ; add s a ··= add m s (f a) ; read s ··= read m s |}.

This functor wraps a mono type and applies f to all inputs prior to processing. For example,
we can use the functor to define mono types that fork their input:
Definition fork_mono (m1: Mono ST1 I O1) (m2: Mono ST2 I O2): Mono (ST1 * ST2) I (O1 * O2)

··= fmap_input_mono (fun a ⇒ (a,a)) (prod_mono m1 m2).

The fork mono is like a product mono, but both contained mono types expect the same input
type I. We can use an input functor to duplicate a given input and use the standard product
mono to do the composition.

Map mono. Finite maps are used ubiquitously in computing, and program analysis applic-
ations in Datalog are no exception. For example, even a flow-insensitive analysis usually
tracks abstract values for each variable map[string,V], where V forms a lattice and multiple
entries for the same variable are joined. A flow-sensitive analysis computes such a map for
each control-flow node map[Node,map[string,V]]. To support this important class of Datalog
applications, we developed a construction for map monos:

ECOOP 2025
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A map mono accepts input pairs K * V, where K is a key and V is a value. However, it does
not store the values for keys directly. Instead, all values associated with the same key are
added to a mono type m with input V. The map mono then stores the state of m for each key:

Definition map_mono ‘{Bounded O} (m: Mono ST V O): Mono (map K ST) (K * V) (map K O) ··=
{| init ··= empty_map
; add s ka ··= let (k, a) ··= ka in

map_add_with s k (fun st ⇒ add m st a) (add m (init m) a)
; read s ··= map_map_values (read m) s

|}.
Definition map_add_with {K V} : map K V → K → (V → V) → V → map K V.
Definition map_map_values {K V1 V2} : (V1 → V2) → map K V1 → map K V2.

Initially, the state of a map mono is the empty map; we initialize the state for new keys on
demand in add. To this end, add uses a helper function map_add_with s k f v that adds key k to
map s. If the key already exists in s, map_add_with uses f to update the old value using add of
m. But if the key is new s, map_add_with inserts its value v. This is where add lazily initializes
the entry for k with init m before adding a to it. The result of the map mono is another map,
which contains the outputs of m for each key in the map.

To prove that map_mono produces valid mono types that satisfy the mono_law, we need to
introduce a partial order on maps. The constraint Bounded V means V has a partial order and
a bottom element.

Instance map_order {K V} ‘{Bounded V}: PartialOrder (map K V) ··=
{ s1 ⊑ s2 ··= forall k, map_find_default k bottom s1 ⊑ map_find_default k bottom s2 }.

Function map_find_default k v s yields the value of k in s, or v if s does not contain k. This
means we compare two maps by treating all undefined keys as being assigned to bottom.
Thus, s1 ⊑ s2 holds if for all keys k in s1, either s1(k) = bottom or s2 also contains k and
s1(k) ⊑ s2(k). Based on this order, we prove mono_law for map_mono by induction on its internal
state. We can now use the map mono to construct various useful mono types, such as:

Definition multi_map_mono K V ··= map_mono K (set_mono V).
Definition var_sign_mono ··= map_mono string (lattice_mono sign).
Definition stmt_var_interval_mono ··=

map_mono stmt (map_mono string (lattice_mono interval)).

The var_sign_mono can be used for a flow-insensitive sign analysis, tracking the sign of each
variable. The stmt_var_interval_mono nests two map monos to track the range of each variable
for each statement separately. These mono types can improve the programmability of
Datalog.

3 Integrating Mono Types into Datalog

The theory from the previous section establishes that reading from a mono type yields
monotonically growing observations about its state. In the present section, we explain how
this property enables us to integrate mono types into Datalog. Syntactically, the integration
is straightforward as shown in Figure 1 (you can ignore the parts in blue for now). This
follows our examples from the paper: We add an atom t += t to add a value to a mono type,
new M to create a new mono instance, and read(t) to read the result of a mono type. The
present section explains how these constructs can be integrated into Datalog semantically.

Our strategy for integrating mono types into Datalog is to treat them as a generalized
form of aggregation. In Datalog, aggregation is often written as an annotation on the rule
head:



R. Xu, D. Klopp, and S. Erdweg 5:9

p ∈ Prog ::= r

r ∈ Rule ::= P (t) :− a. | P (t, α(t)) :− a.

a ∈ Atom ::= P (t) | t = t | t += t@t

t ∈ Term ::= c | x | new M (m)@T | read(t)
m ∈ MonoTerm ::= new M(m) | c

c ∈ Val x ∈ Var M ∈ MonoType α ∈ AggOp

Figure 1 Datalog syntax extended with constructs for creating, adding to, and reading from a
mono type.

R(x, α(y)) :- P(x, y).
P("a",1). P("a",2). P("b",1). P("b",3). P("c",10).

Here, α is an aggregation operator, α(y) is the aggregation results, and all bindings for y in
the body of R are the aggregation inputs. Note that we obtain a separate aggregation result
for each x in R(x,α(y)). For example, if α implements a sum aggregation, we obtain:
R("a",3). R("b",4). R("c",10).

This form of aggregation is prevalent in existing Datalog systems and we want to reuse it
for mono types. However, mono types are first-class containers, and aggregation happens
within each container. To embed mono types in Datalog, we have to solve 3 conceptual
challenges first:

The above example uses strings to distinguish aggregation results. Mono instances also
need to be distinguishable, so that each one can provide their own aggregation result.
The above example collects all aggregation inputs in a relation P. Mono instances also
need to collect their inputs, even though they are provided through scattered calls of add.
The above example uses a simple aggregation operator α : 2int → Y that takes a set of
input elements of type int and yields a value of some type Y. Mono types use add and
read functions to produce aggregation results, which does not fit the signature of α.

In the remainder of this section, we describe these challenges in detail and propose concrete
solutions. In the end, we present translation rules that compile mono types to Datalog and
give a declarative semantics for mono types.

3.1 Representing Mono Instances
Each instance of a mono type represents a distinct container. Adding an element to one
mono instance may not affect other mono instances. That is, mono instances need to be
identifiable and distinguishable. Consider the following example, reproduced from Section 1:
sharedVar(v) :- e1 = Plus(Plus(x1,x2),y), e2 = Plus(y,Plus(z1,z2)), hasVar(e1,v), hasVar(

e2,v).
hasVar(e, v) :- m = new set[int], collectVar(e,m), read(m) = v.
collectVar(e, m) :- ?Var(e,v), m += v.
collectVar(e, m) :- ?Plus(e,lhs,rhs), collectVar(lhs,m), collectVar(rhs,m).

In our example, sharedVar invokes hasVar twice, once for e1 and once for e2. Accordingly,
hasVar must create two instances with new set[int], one for each expression. In contrast to
object-oriented programming languages, Datalog does not have side-effects, which is necessary
for creating unique object IDs. We need a different approach.

Our solution is based on an observation: Predicate hasVar creates a distinct mono instance
for each expression e provided as input. By default, the atoms that occur before new set[int]
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in the body of hasVar determine how many mono instances we need: one for each unique
binding of variable e. In general, if a rule P (t) :− a1, . . . , an. has an atom ai that contains
new M , then we need a distinct instance of M for each substitution produced by a1, . . . , ai−1.
For each substitution σ = {X1 7→ c1, . . . , Xk 7→ ck} produced by a1, . . . , ai−1, we uniquely
represent the associated mono instance as a tuple (c1, . . . , cn). We also support a more
explicit form for t : new M(m), which lists relevant variables explicitly and does not rely on
the order of atoms in the rule. Note that nested mono constructors such as the two sets in
new sum(new set[string], new set[int]) are arguments to the surrounding sum mono; they are
not values in Datalog and do not require a Datalog representation.

3.2 Collecting Mono-Type Inputs
Datalog aggregation is defined over relations: A relation collects all relevant aggregands to
be processed by an aggregation operator. In contrast, the aggregands of mono types are
scattered throughout the program: the invocations of += determine the relevant aggregands,
but there is no central relation that collects them. For example, consider again the following
program from Section 2, where we add values to a mono type m in two different places:
main(e) :- m = new sum(new set[string], new set[int]), collectInfo(e, m).
collectInfo(e,m) :- ?Var(e,v), m += (inl v).
collectInfo(e,m) :- ?Num(e,n), m += (inr n).
collectInfo(e,m) :- ?Plus(e,lhs,rhs),collectInfo(lhs,m),collectInfo(rhs,m).

To enable aggregation for mono types, we must collect the aggregands in a relation. We
found that we can use a magic set transformation to achieve this. A magic set transformation
rewrites the Datalog program to collect the relevant arguments of a relation [16]. If we treat
m += a as a call to a synthesized relation Aggregand(m, a), we can use a magic set transformation
to obtain the following rules:
Aggregand(m, a) :- ?Var(e,v), a = inl v.
Aggregand(m, a) :- ?Num(e,n), a = inr n.

These rules are derived from the previous program by copying the relevant atoms for each
m += a. This way, the Aggregand relation enumerates the added aggregand values a for each
mono instance m.

By collecting all added values in a relation, we implicitly submit to Datalog’s set semantics.
Specifically, even when executing m += a multiple times, relation Aggregand will only enumerate
(m,a) ∈ Aggregand at most once; multiple occurrences of the same tuple are collapsed. While
this is fine for the set monos used in the example above, other mono types are less permissive.
For example, consider we want to infer how often each variable occurs in an expression:
main(e) :- m = new map[string,nat](new nat_sum), collectInfo(e, m).
collectInfo(e,m) :- ?Var(e,v), m += (v,1).
collectInfo(e,m) :- ?Plus(e,lhs,rhs),collectInfo(lhs,m),collectInfo(rhs,m).

Even if an expression contains the same variable or numeric literal multiple times x + y + x,
the Aggregand relation will only contain two tuples: (m, ("x",1)) and (m,("y", 1)). That is, the
second insertion of (m, ("x",1)) does not show up, because Datalog employs its set semantics
for the relation. As a consequence, we would incorrectly compute that both "x" and "y" only
occur once in the expression.

This issue is well-known for aggregations in Datalog, and we adapt the standard solution [9].
To distinguish different occurrences of aggregands, we introduce auxiliary columns that help
distinguish them. Figure 1 showed the necessary syntactic constructs in blue font. For our
example, we can use the IDs of expressions for this purpose:
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main(e) :- m = new map[string,nat](new nat_sum)@Exp, collectInfo(e, m).
collectInfo(e,m) :- ?Var(e,v), m += (v,1)@e.
collectInfo(e,m) :- ?Plus(e,lhs,rhs),collectInfo(lhs,m),collectInfo(rhs,m).
Aggregand(m, kv, id) :- ?Var(e,v), kv = (v,1), id = e.id.

Note how we augmented the mono construction with the type and the add call with the value
of the auxiliary columns. For x + y + x we obtain the following aggregands, assuming each
variable has a distinct ID Var#i.

Aggregand(m, ("x",1), Var#1). Aggregand(m, ("y",1), Var#2). Aggregand(m, ("x",1), Var#3).

Importantly, aggregation will ignore the auxiliary columns. It will query Aggregand(m, kv, _)

and call add for each individual entry. The next subsection explains how aggregation works
in detail.

3.3 Mono Types as Generalized Recursive Aggregation
Conceptually, Datalog’s aggregation operators are defined over sets of inputs and have
the signature α : 2X → Y. That is, given a set of inputs of type X, aggregation yields
a single output of type Y . In practice, Datalog systems compute aggregation results
iteratively and require aggregation operators of the following form: β : Y × (X → Y → Y).
An aggregation operator β defines an initial result β1 that corresponds to α(∅) and an
update function β2 that incorporates another input. Then, for X = {x1, . . . , xn}, we have
α(X) = β2(xn, (. . . , β2(x1, β1))).

As a first try, we could integrate mono types as iterative aggregation operators β =
(init, add). The read function is then only applied after obtaining the mono-type state
through aggregation. This leads to code of the following form, where x are mono-type inputs,
y are mono-type states, and z are mono-type outputs:

Aggregand(m, v) :- ... .
Aggregate(m, β(x)) :- Aggregand(m, x).
P(z) :- Aggregate(m,y), read(y) = z.

But this approach faces a semantic issue: it does not work for recursive aggregation.
If recursive aggregation occurs the Datalog program (indirectly) feeds the output y of

an aggregation back as input x. Many interesting use cases of aggregation require recursive
aggregation, including program analysis and network analysis. For example, consider again
the social-network analysis from Section 1, which finds the most popular friend:

mostPopFriend(p, max((p, n))) :- n = count(connectedWith(p,_)).
mostPopFriend(p1, max((p, n))) :- connectedWith(p1, p2), mostPopFriend(p2, (p, n)).
main(p) :- mostPopFriend("Alice", (p, _)).

This program uses recursive aggregation, because the second rule obtains an aggregation
output (p,n) of p2 and uses it as aggregation input for p1. Recursive aggregation is only well-
defined if the aggregation operator is monotone: ∀ X. ∀ Y. α(X) ⊑ α(X ∪ Y ) for traditional
aggregation, or ∀ x. ∀ y. y ⊑ β2(x, y) for iterative aggregation.3 Monotonicity of aggregation
is important because new aggregation results replace prior aggregation results (in contrast to
regular columns, which accumulate all derived values in a set). But our mono types do not

3 Note that the initial result β1 does not need to be a least element because Datalog yields no result
when there are no aggregands. Internally, Datalog embeds aggregations results in option Y and yields
None initially, but Some y subsequently.
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guarantee monotonicity for the states aggregated by add; we only ensure monotonicity for
the resulting outputs. This renders the above approach incorrect because the second column
of Aggregate(m,β(x)) does not grow monotonically. Consequently, we lose the property that
every Datalog program has a minimal model, and a fixed-point does not need to exist.

We can fix the situation by considering mono types as generalized aggregation operators

γ : Y × (X → Y → Y) × (Y → Z).

This directly corresponds to the interface of mono types, with γ = (init, add, read) and
extends iterative aggregation by incorporating the output projection read. While this
may seem negligible, it significantly alters the semantics of Datalog programs using such
aggregation:
Aggregand(m, v) :- ... .
Aggregate(m, γ(x)) :- Aggregand(m, x).
P(z) :- Aggregate(m,z).

Compared to the first approach, Aggregate now contains output values z rather than internal
states y. And since mono types guarantee monotonicity of the projected outputs through the
mono_law, we can use them as a generalized form of aggregation. For example, this generalized
aggregation is necessary to correctly embed the collatz_mono into Datalog, because its output
is monotone even though its state fluctuates. We have used generalized aggregations in
an existing Datalog system (see Section 5) and it was easy to replace β-aggregation by
γ-aggregation.

3.4 Formal Translation and Mono Dispatch
The previous subsections explained the ideas for encoding mono types in Datalog. To make
these encodings precise and reproducible, we provide a formal translation from Datalog with
mono types to Datalog with aggregation. Figure 2 shows the translation rules, which we
explain one by one subsequently. The reason we define the semantics of mono types through
translation to recursive aggregation is that the semantics of recursive aggregation is well
understood [9] and supported by modern Datalog engines.

A program consists of rules r1 · · · rn, which we translate compositionally Jr1K · · · JrnK.
However, to support mono types, we must also generate additional rules for each mono con-
struction new M(m)@U in the program. Note that U are the types of the auxiliary columns
used to distinguish different occurrences of added inputs as described in Subsection 3.2. For
each mono construction, we derive three new rules:

Aggregand: Collects all aggregands of a mono type, added through invocations of m += t.
As explained in Subsection 3.2, we rely on a magic-set transformation to synthesize the
rules for this predicate; our translation only indicates the head of these rules.
AggregateM(m): Performs the aggregation for the fully instantiated mono type M(m) in
the head of the rule. The body of the rule draws the aggregation inputs from Aggregand,
ignoring the auxiliary columns.
Aggregate: Since different mono types can occur in the same program, we need to carefully
select the correct aggregation operation (an issue we have ignored so far). To this end,
we use Aggregate to dispatch over the current mono type. Specifically, if m is a mono
instance of M(m), we dispatch to AggregateM(m). Note that these dispatch alternatives
must be generated statically to identify the predicate named AggregateM(m).

The rest of the translation is compositional; Figure 2 only shows the rules for rewritten
atoms. First, consider the construction of a new mono instance of M(m). We represent
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Jr1 · · · rnKprog = Jr1Krule · · · JrnKrule · Jnew M(m)@T ∈ (r1 · · · rn)Kagg

Jnew M(m)@(U1, . . . , Uk)Kagg = Aggregand(m, t, (u1, . . . , uk)) :− by magic set trans.
AggregateM(m)(m, M(m)(t)) :− Aggregand(m, t, _ ).
Aggregate(m, t) :− ?MonoVal(m, M(m), _),

AggregateM(m)(m, t).

Ja0 :− a1, . . . , anKrule = a0 :− Ja1Katom , . . . , JanKatom

Jm = for t : new M(m)@UKatom = m = !MonoVal(M(m), t)
Jm += t@uKatom = Aggregand(m, t, u)
Jx = read(m)Katom = Aggregate(m, x)

Figure 2 Formal translation of Datalog with mono types to Datalog with generalized aggregation.

mono instances as algebraic data in Datalog: m = !MonoVal(M(m), t) constructs a mono
instance and ?MonoVal(m, M(m), t) deconstructs m again. Each mono instance contains
its fully instantiated mono type M(m) and a list of values computed by t that uniquely
identifies each mono instance as explained in Subsection 3.1.

An add operation m += t@u translates to a call of relation Aggregand. The magic
set transformation will use this call to generate a rule for Aggregand that enumerates the
arguments of the call. Here, the terms u serve to distinguish different occurrences of t.
Finally, we read the aggregation result of a mono instance by calling relation Aggregate.

This concludes the integration of mono types into Datalog. In the translated program, the
aggregation operator M(m) is both order-independent and monotonic under bag inclusion,
based on the algebraic properties of mono types. Thus, our integration does not jeopardize
the least-fixed point semantics of Datalog with recursive aggreation [13], as long as there
is no infinite ascending chain in the aggregation domain. We can use our translation to
execute Datalog programs with mono types in any Datalog engine that supports generalized
aggregation, such as Viatra/IncA [17], Ascent [10], and Flix [8].

3.5 An Example of Mono-type Translation
Even with above translation rules, understanding the execution of Datalog programs with
mono types can be challenging, especially for readers who are unfamiliar with recursive
aggregation. To aid in comprehension, we present a concrete example of the translation and
the execution of a Datalog program with mono types.

Consider a program that determines the number of followers for the most-followed user
(we call it maximum follower count in the follows) in Alice’s social network. This program
uses a map mono, which associates each user’s name with a nat_max mono, to track the
maximum follower count for each individual.

visit(m) :- followers(p, n), m += (p,n).
visit(m) :- connected(p, q), visit(q,m), map = read(m), m += (p,map(q)).
main(f) :- m = new map[string, nat](new nat_max), visit(m), f = read(m)("Alice").

Here is the translation of above program. For simplicity, we use ... to leave the body
generated by magic set transformation, and inline the AggregateM(m) rule as there is only
one mono-type instance created.

visit(m) :- followers(p, n), Aggregand(m,p,n).
visit(m) :- connected(p, q), visit(q,m), Aggregate(m,map), Aggregand(m,p,map(q)).
main(f) :- m = !MonoVal(map_mono(nat_max)), visit(m), Aggregate(m,d), f = d("Alice").
Aggregand(m,p,n) :- ...

ECOOP 2025



5:14 Mono Types — First-Class Containers for Datalog

John : 15 Bob : 20

Olivia : 5Alice : 3

(a) An instance of
social-network.

Aggregand(m,p,n) Aggregate(m, d)

Iter. 1 (m, "Alice", 3), (m, "John", 15)*) (m, Map("Alice" -> 3, "John" -> 15,
"Olivia" -> 5, "Bob" -> 20))(m, "Olivia", 5), (m, "Bob", 20)

Iter. 2

(m, "Alice", 15), (m, "John", 20)
(m, Map("Alice" -> 15, "John" -> 20,

"Olivia" -> 20, "Bob" -> 20))
(m, "John", 5), (m, "John", 3)

(m, "Olivia", 15), (m, "Olivia", 20)

(m, "Bob", 5), (m, "Bob", 15)

Iter. 3 (m, "Alice", 20)
(m, Map("Alice" -> 20, "John" -> 20,

"Olivia" -> 20, "Bob" -> 20))

*) We use m to represent the mono-type value map_mono(nat_max) for brevity.

(b) The execution trace of the translated program.

Figure 3 A concrete example of the execution of Datalog programs with mono types.

Aggregate(m,map_mono(nat_max)(p,n)) :- Aggregand(m,p,n).

We illustrate the execution of the translated program using a simple example in Figure 3.
Figure 3a depicts a sample social network that includes Alice, where Alice : 3 indicates that
Alice has three followers. We detail the execution trace for both the Aggregand and Aggregate

rules in Figure 3b. The aggregated argument of the Aggregate relation is a map that associates
each user with the maximum follower count in her network. In the second iteration, John’s
maximum user count is updated by 20, which triggers the tuple Aggregand(m, "Alice", 20)

derived in the third iteration. Besides, we can observe that the number of followers for each
user in the map mono grows monotonically. We do not show the fourth iteration because no
new tuples are derived and the program terminates. This example shows that performing
mono add after mono read will lead to recursive aggregation in the translated program, but
mono types abstract from the complications this involves.

4 Mono-Type Equivalence and Optimization

Mono-type aggregation can have a considerable performance overhead in Datalog systems
because we are leaving the realm of Datalog’s highly optimized relational algebra. In this
section, we develop a theory for the equivalence of mono types that allows us to replace
mono types without changing the semantics of a Datalog program. We then explain how
this theory establishes optimizations for mono types and how they can reduce the need for
aggregation in important cases.

4.1 Mono-type Equivalence
Intuitively, we consider two mono types to be equivalent if they produce the same outputs
given the same sequence of inputs. There is no need to compare the states of mono types
since they are invisible in the Datalog programs. For example, we introduced different
version of the set mono in Section 2 (shown below): set_mono1 uses a list internally and
converts it to a set on read, while set_mono maintains a set of added elements internally and
yields that set on read. These two mono types are equivalent because they produce the
same sets as output, independent of states. However, sometimes we want to compare mono
types that have different output types. For example, we would expect a multimap mono
map_mono K (set_mono V) is equivalent to set of pairs set_mono (K * V), because their output
types map K (set V) and set (K * V) are isomorphic. Accordingly, we formalize the equivalence
on mono types through a bidirectional embedding. A function f embeds mono type m1 into
m2 if (i) f maps the initial output of m1 to the initial output of m2 and (ii) f is closed
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under add. That is, instead of running m2, we can run m1 and embed its outputs to obtain
results equivalent to m2. Two mono types then are equivalent if there exist embeddings in
both directions. We formalized mono-type equivalence in mono_equiv below and proved it is a
reflexive, symmetric, and transitive relation in Rocq:
Definition reachable (m : Mono ST I O) (st : ST) ··=

exists (l : list I), List.fold_left (add m) l (init m) = st.
Definition mono_embed (m1 : Mono ST1 I O1) (m2 : Mono ST2 I O2) (f : O1 → O2) : Prop ··=

f (read m1 (init m1)) == read m2 (init m2) ∧
forall (s1 : ST1) (i : I), reachable m1 s1 → exists (s2 : ST2),

reachable m2 s2 ∧ f (read m1 s1) == read m2 s2 ∧
f (read m1 (add m1 s1 i)) == read m2 (add m2 s2 i).

Definition mono_equiv (m1 : Mono ST1 I O1) (m2 : Mono ST2 I O2)
(f : O1 → O2) (g : O2 → O1) : Prop ··= mono_embed m1 m2 f ∧ mono_embed m2 m1 g.

We showed mono_equiv holds for the multimap mono map_mono K (set_mono V) and set_mono

(K * V). To this end, we defined embedding functions for their outputs and verified they
satisfy mono_embed.

4.2 Mono-type Functors
With mono-equivalence in place, we can now study how to transform between equivalent
mono types. If we inspect the specification of mono types and their equivalence relation,
we can find two significant ways to transform between equivalent mono types. First, we
can post-process the result of read to produce an alternative output. And second, we can
post-process the result of add to produce (and maintain) an alternative state. We call both
kinds of transformations mono-type functors and provide sufficient criteria to ensure they
preserve equivalence. This means that no manual equivalence proof will be necessary for
mono types where one is derived from the other through mono-type functors.

We design output functors to change the output type and value of a mono type. To this
end, we specify OutputFunctor, which employs a function f to adjust the read operation and
leave init and add untouched. The result of OutputFunctor is a new mono type whose output
changed from type O1 to O2. In order to preserve the mono_law, we require f to be a monotone
function.
Definition OutputFunctor (f : O1 → O2) (_ : monotone f) (m : Mono ST I O1)

: Mono ST I O2 ··= {| init ··= init m ; add ··= add m ; read s ··= f (read m s) |}.

For example, we can derive a flattened version of the multimap mono:
Definition flatten_multimap {A B} : map A (set B) → set (A * B).
Definition flat_multimap_mono : Mono (map K (set V)) (K * V) (set (K * V)) ··=

OutputFunctor flatten_multimap _ (map_mono K (set_mono V)).

Observe how flat_multimap_mono yields outputs of type set (K * V) rather than map K (set V).
This way, output functors allow us to create many interesting mono types by projection of
the output. For example, we can use output functors to obtain a mono that only contains
the unique keys of a multimap, or only those entries that satisfy a filter function.
Definition multimap_keys_mono : Mono (map K (set V)) (K * V) (set K) ··=

OutputFunctor map_keys _ (map_mono K (set_mono V)).
Definition multimap_size_mono : Mono (map K (set V)) (K * V) nat ··=

OutputFunctor set_size _ flat_multimap_mono.

Here, the last example shows that we can stack applications of OutputFunctor: We use a
flattened multimap and take its size. This way, multimap_size_mono computes the number of
key-value pairs.
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But, when are the resulting mono types equivalent to the original ones? We have proved
that, if f has an inverse function g, the mono type generated from an output functor is
equivalent to the original mono type. That is, the effect of OutputFunctor must be reversible:
Theorem ob_functor_equiv : forall (m: Mono ST I O1) f (f_mono: monotone1 f) g,

bijective f g → mono_equiv m (OutputFunctor f f_mono m) f g.

Not all uses of OutputFunctor satisfy this property. But, we can use this lemma to guarantee
a multimap mono is equivalent to its flattened version:
Definition unflatten_multimap : set (K * V) → map K (set V).
Lemma bij_flatten_multimap : bijective flatten_multimap unflatten_multimap.
Lemma flat_multimap_equiv : mono_equiv (map_mono K (set_mono V)) flat_multimap_mono.

State functor. We formulate state functors to derive new mono types that operate on a
modified state. Unlike output functors, state functors use a pair of functions f and g that
convert between ST1 and ST2 and back. This is necessary because the state is both argument
and result of add. While add operates on ST1 in the original mono type, we aim to derive add

that operates on ST2. To this end, we map the argument state from ST2 to ST1 to apply the
original add, and then map its result back to ST2. To ensure the resulting definition satisfies
the mono_law, we require function f ◦ g to be both extensive and increasing in domain ST1.
Moreover, we impose another restriction indep to guarantee the transformed mono types
meet the ord_indep law.
Definition extensive (f : ST1 → ST1) (m : Mono ST1 I O) ··=

forall s : ST1, result m s ⊑ result m (f s).
Definition increasing (f : ST1 → ST1) (m : Mono ST1 I O) ··=

forall s1 s2 : ST1, result m s1 ⊑ result m s2 → result m (f s1) ⊑ result m (f s2).
Definition ord_indep_abs (f : ST2 → I → ST2) (g : ST2 → O) ··=

forall s a1 a2, g (f (f s a1) a2) = g (f (f s a2) a1).
Definition StateFunctor (f : ST1 → ST2) (g : ST2 → ST1) (m : Mono ST1 I O)

(_ : extensive (f ◦ g) m) (_ : increasing (f ◦ g) m)
(indep : ord_indep_abs (fun s a ⇒ f (add m (g s) a)) (read m ◦ g) : Mono ST2 I O ··=
{| init ··= f (init m) ; add s a ··= f (add m (g s) a) ; read s ··= (read m ◦ g) s |}.

The state functor derives mono types that operate on different states internally. For example,
we can transform the multimap mono to use flattened sets as states:
Definition multimap_flat_state_mono : Mono (set (K * V)) (K * V) (map K (set V)) ··=

StateFunctor flatten_multimap unflatten_multimap _ _ (map_mono K (set_mono V)) _.

Note how the derived mono type uses sets of pairs internally, although its output is still a
multimap for now. But is the resulting mono type also equivalent to the original one? We
have proved that, if f is a bijection and g is its inverse, StateFunctor preserves the equivalence
of mono types:
Theorem st_functor_equiv {ST1 ST2 I O} ‘{PartialOrder O, PartialOrder ST1,

PartialOrder ST2} : forall (m: Mono ST1 I O) (f : ST1 → ST2) (g : ST2 → ST1),
bijective f g → mono_equiv m (StateFunctor f g _ _ m _) id id.

Composing functors. We can compose mono-type functors by stacking them. The order in
which we compose multiple StateFunctor or multiple OutputFunctor instances matters, because
one transforms the output of the other. We have seen an example of this in multimap_size_mono,
which stacks two OutputFunctor: The first converts a multimap to a set of pairs, the second
counts the number of entries. Consequently, the order of their application cannot be changed.
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Mono ST1 I O1 Mono ST2 I O1

Mono ST1 I O2 Mono ST2 I O2

StateFunctor f g

OutputFunctor h OutputFunctor h

StateFunctor f g

Figure 4 Commuting diagram for OutputFunctor and StateFunctor under mono_equiv.

The story is different when combining a StateFunctor with an OutputFunctor: One changes
the state, the other changes the output. In that sense, we could try to apply them in any
order. Indeed, we were able to prove that the order of their application is irrelevant for
mono_equiv. Figure 4 shows the corresponding commuting diagram.

4.3 Optimization by Mono-Type Replacement
The equivalence relation mono_equiv indicates that we can use one mono type as a drop-in
replacement for another mono type. Thus, if one implementation is more efficient than the
other, we may opt for the better one. Mono-type functors help us establish such equivalences.

We illustrate the mono-type replacement for the multimap mono. So far, we have
established a number of mono types that are provably equivalent to the multimap mono.
Definition flat_multimap_mono : Mono (map K (set V)) (K * V) (set (K * V)) ··=

OutputFunctor flatten_multimap _ (map_mono K (set_mono V)).
Definition multimap_flat_state_mono : Mono (set (K * V)) (K * V) (map K (set V)) ··=

StateFunctor flatten_multimap unflatten_multimap _ _ (map_mono K (set_mono V)) _.
Definition flat_multimap_flat_state_mono : Mono (set (K * V)) (K * V) (set (K * V)) ··=

OutputFunctor flatten_multimap _ multimap_flat_state_mono.

The last mono type shown above composes the state functor used in multimap_flat_state_mono

with an output functor. The implementation of this mono type is not efficient, because it is
converting back and forth between maps and sets all the time. But its signature suggests a
way forward: it uses a set of pairs both as state and output. This is interesting, because we
have seen another mono type that admits this type:
Definition set_pair_mono : Mono (set (K * V)) (K * V) (set (K * V)) ··= set_mono (K * V).

Since the state and output functor have done most of the heavy lifting, it is easy to prove
that the set mono on pairs is equivalent to the last multimap mono from above:
Lemma set_multimap_equiv : mono_equiv flat_multimap_flat_state_mono set_pair_mono id id.

Hence, we can replace any multimap mono by a set mono in Datalog programs. We can
follow the same approach to prove further equivalences and use them to opt for more efficient
mono types.

4.4 Optimization by Mono-Type Elimination
This paper introduces mono types as a new abstraction for Datalog programmers. However,
not all mono types are necessary at run time because Datalog provides some mono types as
built-ins. We can eliminate those mono types that are built into Datalog from the program.

First, most Datalog systems support a number of primitive aggregations functions, such as
count, max, or sum. Of course, we can reuse them instead of using nat_sum, for example. But this
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is unlikely to affect the performance of the program much, because the built-in aggregations
have to do the exact same work as our mono types and the aggregations resulting from them.

The second class of built-in mono types is much more important: Datalog has a number
of relational mono types built-in. For example, Datalog relations essentially implement the
set_mono: they collect tuples monotonically. If we can adopt such built-in relational mono
types, we can eliminate the aggregation that the standard semantics of mono types imposes.
Aggregation can have a considerable performance overhead in Datalog systems because we
are leaving the realm of Datalog’s highly optimized relational algebra. So this is likely to
have a large performance impact.

Since the set mono is built into Datalog, we can optimize the translation rule:

if mono_equiv M(m) (set_mono A) for some A:
Jnew M(m)@(U1, . . . , Uk)Kagg = AggregateM(m)(m, t) :− Aggregand(m, t, _ ).

else:
Jnew M(m)@(U1, . . . , Uk)Kagg = AggregateM(m)(m, M(m)(t)) :− Aggregand(m, t, _ ).

If M(m) is equivalent to a set mono, the aggregation can be skipped: Note how the head
of the generated rule simply forwards the aggregands. In contrast, other mono types have
to aggregate the aggregands using M(m). For example, we have established that the mono
type for multimaps is equivalent to the mono type for sets. Therefore, multimaps do not
require aggregation using the optimized translation rules.

We found another important relational mono type that is built into Datalog and which
we call functional relations. A functional relation is a finite relation (i.e., set of tuples) with
a functional dependency, meaning that some columns uniquely determine other columns.
Datalog allows functional relations to aggregate the uniquely determined columns. Therefore,
we can faithfully capture functional relations as the following mono type:
Definition fun_dep (s : set (A * B)) ··=

forall (a : A) (b b’ : B), set_In (a, b) s → set_In (a, b’) s → b = b’.
Definition funrel A B ··= {s : set (A * B) | fun_dep s}.
Definition funrel_mono K (m : Mono ST I O) : Mono (funrel K ST) (K * I) (funrel K O) ··=
{| init ··= empty_set
; add s ka ··= let (k, a) ··= ka in

funrel_add_with s k (fun st ⇒ add m st a) (add m (init m) a)
; read s ··= funrel_map_values (read m) s

|}.

Here, funrel_add_with uses the first function argument if k already is present in s, and the
second the function argument for new k. Functional relations still require aggregation, but
only on the uniquely determined columns rather than on all columns of the relation. We can
exploit this in a dedicated translation rule:

if mono_equiv M(m) (funrel_mono m′) for some A:
Jnew M(m)@(U1, . . . , Uk)Kagg = AggregateM(m)(m, k, m′(t)) :− Aggregand(m, (k, t), _ ).

Note how the generated rule simply propagates the first half of the input k, and only requires
aggregation of the remainder t. But this only holds for mono types M(m) that are equivalent
to a funrel_mono. We were able to establish such equivalence for the map mono:
Theorem map_funrel_mono_equiv : forall (m : Mono ST I O)

mono_equiv (map_mono K m) (funrel_mono K m) map_funrel funrel_map.

We prove this property by first applying output and state functors to map_mono, such that the
resulting mono type has the same signature as funrel_mono. The remainder of the proof is
manageable and only took a few hours to complete.
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In conclusion, Datalog programs that use a map mono only need to use aggregation
on the values of that map. Moreover, since map_mono K1 (map_mono K2 m) is equivalent to
map_mono (K1 * K2) m, actually only the most-nested value type has to be aggregated. This
has a significant performance impact as we will evaluate in the subsequent section.

5 Implementation, Case Studies, and Performance

We have implemented mono types as an extension of the IncA Datalog system [14] and
made the code available open-source.2 IncA supports generalized recursive aggregations
over user-defined functions, which makes it well-suited for mono types. In particular, we
added built-in support for set monos, map monos, and a number of primitive monos on
strings and numbers. We also provide an interface for user-defined mono types, which
we used to integrate lattice-based mono types for example. We integrated mono types as
described in Section 3 by translating into Datalog with aggregation. The translation for set
monos and map monos is configurable to activate or deactivate the optimization described
in Subsection 4.3 and 4.4. Overall, the integration of mono types required 550 LoC for IncA.

Next, we evaluate the usability and performance of mono types using two case studies:
dependency analysis and interval analysis, each with and without using mono types. Program
analysis is a common use case for Datalog because of its least fixpoint semantics. We show
that mono types significantly improve the performance of these analysis compared to pure
Datalog code.

5.1 Dependency Analysis
We want to analyze the dependencies of a simple language with inter-dependent definitions.
A program of the language consists of definitions that assign a name to an expression.
Expressions are either numbers, additions, or variables:

(programs) p ::= d

(definitions) d ::= def x = e

(expressions) e ::= n | x | e + e

We represent the analyzed program as an abstract syntax tree (AST) which is encoded with
algebraic data types in Datalog. Each variable refers to exactly one definition, as illustrated
with subscripts in the following example:
def a1 = c3; def b2 = 2; def c3 = a1; def main4 = c3

For a given definition, we compute all definitions it transitively depends on. In our example,
main4, a1, and c3 all transitively depend on a1 and c3, whereas b2 is not used.

We implement this analysis in pure Datalog using three central relations:
edgesDefs(defs, from, to) :- ?Cons(defs, hd, tl), edgesDef(defs, hd, from, to).
edgesDefs(defs, from, to) :- ?Cons(defs, hd, tl), edgesDefs(tl, from, to).
edgesDef(defs, def, from, to) :- ?Def(def, _, e), refersTo(defs, e, to), from = def.
edgesDef(defs, def, from, to) :- ?Def(def, _, e), refersTo(defs, e, other),

edgesDef(defs, other, from, to).
refersTo(defs, e, def) :- ?Var(e, name), findDef(defs, name, def).
refersTo(defs, e, def) :- ?Add(e, e1, e2), refersTo(defs, e1, def).
refersTo(defs, e, def) :- ?Add(e, e1, e2), refersTo(defs, e2, def).

2 https://gitlab.rlp.net/plmz/inca-scala/-/tree/layered-ir/inca-ir/src/main/scala/inca/
ir/extension/mono
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Figure 5 Performance results for the dependency analysis.

We first traverse the list of all definitions in edgesDefs. For each definition, we compute
all definitions it depends on using the two rules of edgesDef: A definition def depends on
another definition to if (i) def contains a variable referencing to, or (ii) def contains a variable
reference to other, which in turn depends on to. An expression e refers to a definition def if e

contains a variable with the name of def. We accomplish this using the refersTo relation to
recursively traverses an expression.

We now rewrite this program with mono types. Instead of collecting and propagating
edges in edgesDefs and edgesDef, we create a single mutable mono set and pass it around.
That way, edgesDef can directly write reachable pairs of definitions into the mono set when
they are discovered:

main(from, to) :- m = new set[(Def, Def)], edgesDefs(defs, m), read(m) = (from, to).
edgesDefs(defs, m) :- ?Cons(defs, hd, tl), edgesDef(defs, hd, m), edgesDefs(tl, m).
edgesDef(defs, def, m) :- ?Def(def, _, e), refersTo(defs, e, trg),

m += (def, trg), edgesDef(defs, trg, m).

The changes required to the original dependency analysis are minimal. And the program
became simpler. For example, we now only need a single rule for edgesDef that registers a
dependency edge (def, trg) and also recurs. Similarly, edgesDefs only needs one rule that
asks for the dependencies of hd and recurs on tl at once. But, most importantly for this case
study, mono types improved the performance significantly.

In Figure 5, we show the execution time for the dependency analysis for different sized
cyclic graphs on Viatra [17]. Figure 5a reveals that using a set mono reduces the running
time considerably compared to pure Datalog. This is because the analysis using pure Datalog
code has to propagate edges in edgesDefs and edgesDef, which produces orders of magnitudes
more tuples than the analysis using mono types. Using a mono set eliminates this overhead.
To highlight the difference between the optimized (Mono opt) and non-optimized set mono
(Mono), we ran additional tests with bigger input graphs. As shown in Figure 5b, the
optimization of set monos yields around 10% performance gains. For graphs exceeding 200
nodes this difference becomes more evident. The optimization does not have a bigger impact
because, internally, the state of the non-optimized set mono is represented by an immutable
Scala set. The aggregation operation needs to add elements to this internal state, which is a
constant time operation. Since we are only reading the set mono once, in the main relation,
this aggregation only happens a single time. We have additionally translated the dependency
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analysis program into Soufflé [5] and Ascent [11]. Since neither of them supports user-defined
aggregation, we can only compare the performance between plain Datalog and optimized
set mono on these two engines. We found that the experimental results are almost identical
to Viarta, optimized set mono’s running time is significantly less than plain Datalog. This
experiment result confirms mono types are an effective and general optimization technique
for Datalog.

5.2 Interval Analysis
We also implement a flow-sensitive interval analysis for the While language in Datalog as
idiomatically as possible. We then rewrite it to use nested map monos. Both implementations
share common relations to compute the control flow graph and abstractly evaluate expressions.

Based on the control flow graph, the pure Datalog version uses two mutually recursive
relations intervalBefore and intervalAfter. These relations define the interval value for a
variable before and after the execution of a specific statement. To compute intervalAfter,
we distinguish two different cases. If the current statement is an assignment of the current
variable var, then aeval computes the value of var after the assignment. In all other cases, we
propagate the information from intervalBefore. Note how aeval requires a reference to the
current statement so that it can query intervalBefore for the value of referenced variables in
exp. To compute intervalBefore for a variable var, we join the intervals of var that are valid
after any predcessor statement.
intervalAfter(stmt, var, iv) :- assignment(stmt, var, exp), aeval(stmt, exp, iv).
intervalAfter(stmt, var, iv) :- nonassignedVars(stmt, var), intervalBefore(stmt, var, iv).
aeval(stmt, exp, iv) :- ?Var(exp, v), intervalBefore(stmt, v, iv).
aeval(stmt, exp, iv) :- ...
predecessorIntervals(stmt, var, pred, iv) :- cflow(pred, stmt),

intervalAfter(pred, var, iv).
intervalBefore(stmt, var, lub(iv)) :- predecessorIntervals(stmt, var, _, iv).

To implement the same analysis using mono types, we propagate a single nested mono
map while traversing the control flow graph. The mono map yields a result of type
map[Stmt, map[Var, Interval]], which is the standard abstract domain used in flow-sensitive
data-flow analysis: For each statement, we compute the abstract value of each variable.
With this mono type, we do not need explicit aggregation in the Datalog code anymore.
We initialize the nested mono map for the first statement in the analyzed code and then
propagate it to all other statements. Note that we use the upper-case Interval for the type
of interval values and the lower-case interval for the interval mono type.
traverse(stmt, m) :- isFirst(stmt), m = for stmt : new map[Stmt, map[Var, Interval]](

new map[Var, Interval](new interval)].
traverse(stmt, m) :- cflow(pred, stmt), traverse(pred, m).

Similar to before, we need to handle two different cases when we process a statement. If
the statement is an assignment of a variable var to some expression exp, we evaluate exp

under an environment env. We obtain env from the map mono by first reading the mono
type, which yields the full flow-sensitive analysis result as a nested map, and then performing
a map lookup at stmt, which yields a variable map. This way, aeval does not depend on
intervalBefore or the like, it simply reads variable values from the given environment. If the
analyzed statement does not assign var, then we simply propagate its value to all successor
statements:
transfer(stmt) :- traverse(stmt, m), assignment(stmt, var, exp), cflow(stmt, succ),

env = read(m)(stmt), aeval(env, exp, iv), m += (succ, (var, iv)).
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Figure 6 Performance results for the interval analysis.

transfer(stmt) :- traverse(stmt, m), nonassignedVars(stmt, var), cflow(stmt, succ),
env = read(m)(stmt), iv = env(var), m += (succ, (var, iv)).

aeval(env, exp, iv) :- ?Var(exp, v), iv = env(v).
aeval(env, exp, iv) :- ...

In our opinion, mono types enable a much cleaner definition of the interval analysis that
is very close to the definitions found in program-analysis textbooks. In fact, the definition
of transfer is most declarative: it describes equations that must hold for each statement.
And since transfer is neither directly nor indirectly recursive, it can be understood as a
specification without even considering a fixed-point semantics. Of course, solving this analysis
problem still requires a fixed-point computation due to loops in the analyzed program. This
is evident in the analysis definition implicitly: The values written to the map mono depend on
the values read from the map mono, which will be translated into recursive aggregation. The
mono type protected the programmer from this complication. But, is there a performance
penalty for this abstraction?

Figure 6 shows the performance results for the interval analysis. On the left, we can see
that the non-optimized mono version is orders of magnitude slower than using pure Datalog.
But these are very small programs with only a few hundred CFG edges. We suspect that
this slow down is due to the explicit map data structures that needs to be maintained by
the non-optimized map mono. The optimization for map monos removes this overhead, by
flattening the nested map mono and converting it to relations. Not only does this eliminate
the overhead of the mono type abstraction, the optimized program actually scales much
better to analyzing large programs. For example, to analyze programs with ∼ 700.000 CFG
edges, the optimized map mono requires less than 40s whereas the pure Datalog version
requires more than 80s. This clearly shows that mono types provide abstraction without
regret.

6 Related Work

We develop and mechanize the theory of mono types and their properties in Rocq. To the best
of our knowledge, we are the first to introduce a mutable, monotonic container abstraction
for Datalog. However, in the context of distributed computing and parallel programming,
monotone data types have been studied in the past, which we discuss below. Besides a
thorough theoretical exploration, we also integrate and evaluate mono types using the IncA
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framework for Datalog. In recent years, numerous extensions and frontends for Datalog have
been proposed in the literature. Some of these have features that are related to mono types,
as the following discussion shows.

6.1 Datalog Dialects
Compared to all existing Datalog dialects, mono types bring three novel features. First,
mono types generalize existing styles of aggregation, making aggregation more expressive.
Second, mono types have a mechanized theory in Rocq, including constructions, functors,
and an equivalence relation. And third, mono types behave like first-class containers that
can be propagated and filled anywhere, which improves programmability and performance.
In our discussion below, we focus on the first part, namely the expressiveness of aggregation.
This is because no existing Datalog system has a mechanized aggregation theory nor supports
anything like first-class containers.

Datafun [3] is a typed higher-order functional programming language that can express
Datalog-style programs. Datafun supports aggregation over relations via the join operator of
semi-lattices. Our mono types are a generalization of semi-lattices and permit add operations
that are not computing a least upper bound, such as required for summation. Datafun’s
key feature is to track monotonicity with types by differentiating discrete and monotone
variables. In contrast, we choose to develop and prove the theory of mono types in Rocq and
use this foundation to let users design custom mono types. This is a classic trade-off between
automation and expressiveness. Specifically, Datafun’s type system has limited capabilities for
establishing monotonicity and therefore only supports a few built-in semi-lattices, whereas our
implementation supports user-defined mono types. Finally, Datafun ensures the termination
of fixed-point computations by constraining them to finite semi-lattice types, which are
tracked by its type system. With mono types, we do not guarantee termination but instead
require the user to prevent infinite ascending chains, which is in conformance with lattice-
based aggregation in existing Datalog systems. It would be interesting to study if Datafun
can be faithfully extended to support mono types in place of semi-lattices while retaining its
metatheory.

Flix [8] and IncA [13] are Datalog frameworks that support recursive aggregation over
user-defined aggregation operators. While most aggregation operators in their case studies
are semi-lattices, they can also express other monotonic operations, such as summation [15].
Mono types are more general still, because they support a post-processing through the
read operation, and only the result of read must be monotonic. Since we deviated from the
textbook semi-lattice aggregation, we established a theory of mono types formally in Rocq.
Flix supports validating the monotonicity of user-defined aggregation operators using an
SMT solver [7]. However, given the complexity of properties we needed to establish for
mono types, it seems highly unlikely that an automated approach can establish the same
guarantees. In particular, to enable optimizations of mono types, we had to prove a number
of equivalences between mono types. These optimizations have a significant performance
impact, as our evaluation shows. Existing Datalog systems cannot optimize aggregations.

BYODS [10] is a Datalog engine and dialect written in Rust with support for custom
data structures to back Datalog relations. This not only improves performance, but also
allows the user to extend the semantics of Datalog. Namely, BYODS represents relation
as a triple (D, inj, γ), where D is a lattice that represents the state of the custom relation.
The injection function inj : T → D converts a tuple T to D, which can then be joined with
the current state of the custom relation. And the concretization function γ : D → P(T )
extracts a set of tuples from the state of the custom relation. They have proved that if γ is a
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monotonic function, the custom relation will not break the fixed point semantics of Datalog.
The custom relation is similar to mono types, as D can be seen as the state type, inj and
γ are close to the add and read operation respectively. However, mono types do not require
the state type to be ordered and the output of mono types is not limited to powersets. In
addition, BYODS can also be used to support user-defined lattices and recursive aggregations,
which give rise to performing aggregation on map lattices. But they do not explore how to
optimize aggregations, which requires an equivalence relation over user-defined types like
ours. A promising future work is to combine BYODS with mono types to enable additional
performance improvements after our optimizations.

Dedalus [2] introduces state to Datalog to reason about distributed systems. In particular,
Dedalus introduces a notion of time to Datalog by annotating relations with a monotonically
increasing timestamp. Each change happens at a specific point in time. To persist a fact over
time, it is rederived in each subsequent iteration. Effectively, Dedalus evaluates Datalog over
time, which enables strong updates by revoking or updating facts. While our mono types also
introduce a notion of mutable state to Datalog, they do not permit strong updates. Even
though we enforce no restriction on the state of a mono type, we require their output to grow
monotonically to guarantee a unique minimal model. It is not obvious how we could support
strong updates instead of monotone updates without conflicting with Datalog’s fixed-point
semantics. In general, mono types and Dedalus serve different purposes. Mono types provide
a general purpose abstraction for Datalog to increase programmability and performance.
Dedalus on the other hand, evaluates Datalog over time to reason about distributed systems.

6.2 Application of Monotonic Data Types
Conflict-free replicated data types (CRDTs) [12] is a framework for maintaining eventually
consistent values in distributed systems. There are two types of CRDTs, operation-based
CRDTs and state-based CRDTs. Mono types are more closely related to state-based CRDTs.
Specifically, a state-based CRDT object consists of an initial state, a query method to read
the current state, an update method to modify state, and a merge method to compute the
least upper bound between local state and remote states. CRDT requires the state to grow
monotonically after applying an update or merge method. Except for the merge method, we
can find that state-based CRDTs and mono types exploit a similar design pattern. However,
the monotonicity property serves different purposes in CRDTs and mono types. CRDTs
require monotonicity to guarantee that all of the replicas reach the same state eventually. In
contrast, mono types use monotonicity to ensure the well-definedness of recursive aggregation
in Datalog [13].

Nevertheless, the similarity between CRDTs and mono types leads to a promising direction
for future work: extending mono types to Datalog dialects that are used in the distributed
system, such as Dedalus [2], Bloom [1], or BloomL [4]. Notably, BloomL allows passing
lattice-based stateful objects across relations, and adopts similar ideas as mono types to
collect the inputs of objects. However, mono types provide a more generalized form of
lattice-based aggregation that differentiates between state and output, which is more flexible
than BloomL. In addition, BloomL does not provide optimization for sets and maps.

LVars [6] (lattice vars) is a model for deterministic-by-construction parallel programming.
Its interface only exposes a put operation (compute the lub) and a get operation (to read the
state) to programmers. To guarantee determinism, LVars require the get operation to only
return a state from a predefined threshold set Q, in which the lub of two distinct elements is
⊤ (the error state). With mono types, we do not need to associate a threshold set since we
can rely on the eventual consistency of the fixed-point computation.
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7 Conclusion

We propose mono types, a monotonic data structure for Datalog to improve its programmab-
ility and performance. Mono types support three essential operations: (1) we can instantiate
them, (2) we can add elements to them, and (3) we can read monotonically increasing outputs
from them. To guarantee well-defined behaviour for Datalog programs, we mechanize and
prove the theory of mono types in Rocq. Given this theoretical foundation, we integrate
mono types into Datalog by translating them to generalized aggregations over relations.
We identify two central container mono types: set mono and map mono. Using a new
concept of mono equivalence, we show that these containers are native to Datalog in the
sense that we can profit from Datalog’s set semantics to implement them. To validate the
usability and performance improvements of mono types, we implement two case studies, a
dependency analysis and an interval analysis. We show that mono types significantly improve
the performance of these analysis compared to pure Datalog.
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