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Abstract
Incremental computing offers the potential for significant performance gains by efficiently updating
computations in response to changing data. However, traditional approaches are either problem-
specific or use an inefficient all-or-nothing strategy of rerunning affected computations entirely. This
paper presents differential semantics, a novel approach that directly embeds the propagation of
changes into the semantics of a general-purpose programming language. Given a precise description
of input changes, differential semantics rules define how these changes are tracked and propagated
through core language constructs like assignments, conditionals, and loops to produce corresponding
output changes. We formalize differential semantics and verify key properties, including correctness,
using the Rocq proof assistant. We also develop and formally prove a set of optimizations, particularly
for loop handling, that enable asymptotic performance improvements. An implementation of the
semantics as a differential interpreter achieves order-of-magnitude speedups over recomputation on
the Bellman-Ford shortest path algorithm.
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1 Introduction

The field of incremental computing aims to develop programming abstractions for describing
incremental computations: Computations that react to changes of their inputs efficiently.
Most existing approaches follow the idea of selective recomputing [22]: They track which
subcomputations are affected by an input change transitively and rerun these subcomputations
when their up-to-date result is needed [5, 13]. However, this is an all-or-nothing approach:
If a subcomputation is affected in any way, it has to be rerun. For example, consider a
grammar checker that processes a large text document represented as a character string. Any
change to the text will trigger significant recomputations. Better incremental computing
must exploit how the input was changed, not just if it was changed.

In this paper, we propose incremental computing through differential execution. Here and
in the remainder of this paper, we use differential to mean “dealing with differences”. Hence,
differential execution means to execute a program given a description of how its inputs are
changed. We can exploit these change descriptions in two ways. First, we can use dedicated
execution rules that react to input changes directly. For example, when the iteration count
of a loop is increased, it is sometimes sufficient to execute the extra loop iterations without
repeating the previous ones. Second, we can integrate change-processing language primitives,
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which are often asymptotically faster than their non-incremental counterpart. For example,
we can integrate differential operators from relational algebra, as known from live view
maintenance in database systems. This paper focuses on the first aspect: How to provide
differential execution rules that exploit how inputs have changed.

We study differential execution based on the big-step operational semantics of a small
imperative language that features variable assignments, loops, and conditionals. We explain
how to incrementalize these features by developing a differential big-step semantics that
reacts to changes in the initial variable assignment. Specifically, while σ ⊢ s ⇒ σ′ executes
statement s in store σ, we define a differential semantics σ, ∆σ ⊢ s ⇒∆ ∆σ′ that executes
s based on the store change ∆σ. We have implemented our formal model of differential
execution in Rocq and use it to reason about the differential behavior of programs. First,
we prove that the differential semantics does not get stuck and yields the same result as a
recomputation from scratch:

σ ⊢ s ⇒ σ′ ∧ σ, ∆σ ⊢ s ⇒∆ ∆σ′ → σ ⊕ ∆σ ⊢ s ⇒ σ′ ⊕ ∆σ′.

And second, we can use the formal semantics to justify a number of important optimizations.
For example, we prove that the differential semantics may skip statements that do not read
changed variables from ∆σ, and we develop provably correct optimizations for the differential
execution of loops and conditionals. Compared to prior work on the incremental lambda
calculus [9], which also processes change descriptions, we are the first to consider imperative
language features and use a completely different methodology: differential semantics instead
of type-driven program derivation targeting a standard semantics.

While this paper focuses on the formal development, we also want to demonstrate that
the differential semantics enables efficient incremental computations. Unfortunately, a direct
implementation of the differential semantics in an interpreter is inefficient because the
semantics lacks caching of previously computed information. In particular, the differential
semantics σ, ∆σ ⊢ s ⇒∆ ∆σ′ expects the original store σ as input, which has to be computed
for each statement unless we cache it. Therefore, we develop a differential interpreter based
on the differential semantics, but incorporating caching and some verified optimizations. We
demonstrate the efficiency of our differential interpreter empirically based on an imperative
implementation of the Bellman-Ford shortest-path algorithm. Given changes to the initial
edge weights, our differential interpreter computes updates in the shortest paths orders of
magnitude faster than a recomputation could. The differential interpreter is implemented in
Scala 3 and available open-source.1

In summary, this paper makes the following contributions:
We define a static typing discipline for changes of a language’s values, including typed
patching and diffing (Section 3).
We introduce the approach of differential execution based on the differential big-step
semantics of an imperative language. We prove that the differential semantics preserves
types, makes progress, and yields the correct result (Section 4).
We propose, develop, and verify optimizations for differential execution that skip unaffected
statements and improve the running time of loops and conditionals asymptotically (Sec-
tion 5).
We implement an efficient differential interpreter based on our semantics (Section 6) and
use it to incrementalize the Bellman-Ford algorithm, where it yields order-of-magnitude
speedups (Section 7).

1 https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-implementation-ecoop25

https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-implementation-ecoop25
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2 Differential Execution: Goals and Challenges

An incremental computation ∆f(∆x) = ∆y reacts to input changes ∆x and derives output
changes ∆y. How can we automatically provide ∆f given the original function f?

In this work, we assume f is given through its source code s, such that f(x) = y when
x ⊢ s ⇒ y. Our goal is to define a differential semantics σ, x, ∆x ⊢ s ⇒∆ ∆y that can be
used to process changes ∆x of the program input. Note that only the input x can change;
the source code s is not subject to change in this work. We can thus define ∆f(x, ∆x) = ∆y

when σ, x, ∆x ⊢ s ⇒∆ ∆y, since we will see that the differential semantics is deterministic.
The challenge of course is to define the differential semantics such that it is not only correct
but also has efficient incremental performance when reacting to input changes. In this section,
we motivate our approach through examples.

2.1 Differential execution for epidemiological models
In this paper, we explore differential execution for a statement-based imperative programming
language called Imp. Imp features numeric and Boolean values that can be used in assignments,
conditionals, and repeat loops, which iterate a loop body a fixed number of times

(Statements) s ::= x := e | s; s | if e s s | repeat e s

(Expressions) e ::= v | x | e + e | e − e | e ∗ e | ee | e > e

(Stores) σ

We use a big-step reduction semantics σ ⊢ s ⇒ σ′ that takes a program s and an initial
store σ as input, and yields an output store σ′. We can use this language to compute
epidemiological models.

Epidemiological models are essential tools for understanding the spread of infectious
diseases and informing public health interventions [15]. For example, consider a simplified
model that simulates disease spread over a fixed number of n days:
# free variables n, I, and β must be bound in the initial store
α = 0.04
S = 0
repeat n: # n is the number of days for which we model the disease spread

S = S + I # S is the cumulative infection count, which grows by I each day
β = β + α # β is the disease transmissibility, which grows by α each day
I = I * 2.718β # I is the infected population, which grows exponentially based on β

We can now predict how a disease spreads in n = 6 days given an initial infectious population
I = 10 and assuming a transmissibility of β = 0.3 Figure 1a shows the content of the store
σi after iteration i of the loop (we omit n and α because they are constant). This constitutes
the initial, non-incremental run of the program. Note that σ0 shows the initial state of the
model and σout = σ6 is the final prediction.

When epidemiologists revise the initial parameters of the model, we want to update our
prediction efficiently. In the following, we discuss three change scenarios. First, consider
we want to change the initial infected population from 10 to 15. The differential store
∆σ0 in Figure 1b models this change. Our goal is to determine how the final prediction
changes, that is, what is ∆σout. To this end, we propose the use of differential execution:
Essentially, we rerun the program but only consider and compute changes. Starting from
∆σ0, differential execution of the loop body computes ∆σ1, showing how S and I are affected
by the initial change of I. Differential execution continues to iterate the loop body until we
reach ∆σ6 = ∆σout . We observe that 5 additional infections on day 0 lead to 68 additional
infections on day 6.

CVIT 2016
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σ0 = {S 7→0, I 7→10, β 7→0.3}
σ1 = {S 7→10, I 7→14, β 7→0.34}
σ2 = {S 7→24, I 7→20, β 7→0.38}
σ3 = {S 7→44, I 7→30, β 7→0.42}
σ4 = {S 7→74, I 7→47, β 7→0.46}
σ5 = {S 7→121, I 7→77, β 7→0.50}
σout = {S 7→198, I 7→132, β 7→0.54}

(a) Stores σi after i iterations.

∆σ0 = {I 7→ inc 5}
∆σ1 = {S 7→ inc 5, I 7→ inc 7}
∆σ2 = {S 7→ inc 12, I 7→ inc 10}
∆σ3 = {S 7→ inc 22, I 7→ inc 15}
∆σ4 = {S 7→ inc 37, I 7→ inc 24}
∆σ5 = {S 7→ inc 61, I 7→ inc 40}
∆σout = {S 7→ inc 101, I 7→ inc 68}

(b) Differential stores for I 7→ inc 5.

∆σ0...6 = {n 7→ inc 3}
σ7 = {S 7→499, I 7→357, β 7→0.58}
σ8 = {S 7→856, I 7→663, β 7→0.62}
σout = {S 7→1519, I 7→1282, β 7→0.66}
∆σout = {S 7→ inc 1321, I 7→ inc 1150,

β 7→ inc 0.12, n 7→ inc 3}

(c) Differential stores for n 7→ inc 3.

∆σ0...4 = {n 7→dec 5}
σout = {S 7→111, I 7→71, β 7→0.46}
∆σout = {S 7→dec 1408, I 7→dec 1211,

β 7→dec 0.2, n 7→dec 5}

(d) Differential stores for n 7→dec 5.

Figure 1 Original and differential stores during execution of the epidemiological model.

Providing the correct differential result is easy: Reexecute the program and compute the
outputs’ difference. The challenge for differential execution is to compute output changes
efficiently by avoiding recomputations. For example, an increase of I in ∆σ0 does not affect β,
which is why β does not occur in Figure 1b. Indeed, as we prove in Section 5, statements that
do not read changed variables can be skipped during differential execution. It is shortcuts
like this that we need to discover to make differential execution efficient.

For example, consider epidemiologists now want to know what happens after 9 instead of
6 days. We encode this change in ∆σ0 of Figure 1c. Note that we assume the prior change of
I remains in place; changes occur in sequence and have to be undone explicitly if so desired.
How can differential execution handle the change of n efficiently? In general, it is necessary
to repeat each loop iteration to ensure input changes are propagated correctly. However,
in our case, n only determines the number of iterations, but it is not used inside the loop
body. We prove in Section 5 that in this case we can skip all previous iterations and directly
continue with the new ones. Since iterations 7, 8, and 9 have not been executed before, we
have to compute the resulting stores from scratch. The final result ∆σout is then defined
by σ9 ⊖ σ6. In general, when the original loop count n is increased by k, we only need to
perform k instead of n + k iterations, which yields significant speedups when k ≪ n.

Lastly, consider epidemiologists want to rollback n from 9 to 4. This is a case where
incremental computing has to trade-off memory and running time. If we still have σ4 cached,
we can compute ∆σout by σ4 ⊖ σ9. Otherwise, we may have to do more recomputation. In
our study of a formal semantics for differential execution, we ignore all concerns regarding
caching. Later, in Section 6, we discuss how we implemented the formal semantics in an
efficient interpreter and what caching strategies we considered.

2.2 Branch switching and worst-case complexity
A particular challenge for all kinds of incremental computing is what we call branch switching.
A branch switch occurs when a change to the input data alters the control flow, causing a
different branch of a conditional to be executed compared to the original run. For a simple
example, consider this extreme case:
# main function with free variable x, which must be bound in the initial store
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if x < 0:
foo()

else:
bar()

When x changes from negative to positive, the entire behavior of the program shifts: Instead
of running foo, we end up running bar. This has two important consequences. First, the
worst-case complexity of differential execution is at best equal to regular execution. Second,
we must retain (or be able to reconstruct) the original state σ that is valid at the beginning
of a branch. This state is necessary when a branch switch occurs, as input for executing
the other branch. This indicates a lower bound on the memory necessary for differential
execution if we want to avoid reconstructing previously seen states.

Does this mean that all hope is lost? No, not at all. Many conditionals do not amount to
a reconfiguration of the program, but have a rather limited scope. For example, an improved
epidemiological model may consider emergency measures, which are active when infections
exceed a threshold T of 40 patients:
α = 0.04; γ = 0.02; S = 0; T = 40
repeat n:

if I > T: # do infectious cases exceed threshold T?
β = β - γ # emergency measures activated, transmissibility shrinks

else:
β = β + α # no emergency measures, transmissibility grows

S = S + I; I = I * 2.718β

When we change the input variable I, this can now affect the control flow and lead to branch
switching. However, the cost of re-executing one of the branches is limited in this case, and
only results in different subsequent changes to β. One interesting issue that persists is that
branch switching requires diffing between the original and the new state to determine the
subsequent changes. In Section 5, we present an optimization that avoids this cost when
branches execute similar code.

3 Values and Changes

While regular program execution operates on values, differential execution operates on changes.
That is, changes are first-class objects in differential execution. Since the definition of changes
is language-specific, we first introduce general rules for how to design well-behaved changes
for a statically typed base language. We then define specific changes for our imperative
language Imp.

3.1 Change validity, patching, and diffing
Changes must support two fundamental operations: diffing to produce changes from values
(new ⊖ old), and patching to apply changes to values (base ⊕ change). Patching and diffing
should act as inverses: v1 ⊕ (v2 ⊖ v1) = v2 and (v ⊕ ∆v) ⊖ v = ∆v. These laws are elemental
for differential execution as they justify optimizations that avoid redundant work.

However, handling changes correctly is subtle and it is easy to break the second property.
For example, consider v = 2 and ∆v = dec 5 for the naturals with 2 ⊕ dec 5 = 0. Then,

(v ⊕ ∆v) ⊖ v = 0 ⊖ 2 = dec 2 ̸= dec 5 = ∆v.

The problem is that we tried to patch v = 2 with ∆v = dec 5, which is invalid because 2 − 5
does not yield a natural number, and defaulting to 0 contradicts our inversion properties.

CVIT 2016



23:6 Incremental Computing by Differential Execution

The same problem occurs for other data types, such as strings, sets, and lists. For example,
we get (“ab” ⊕ drop 5) ⊖ “ab” = “” ⊖ “ab” = drop 2 ̸= drop 5. Again, we tried to apply a
patch that has an undefined behavior, and defaulting to the empty string breaks our inversion
laws. Therefore, we follow the incremental lambda calculus [9] and restrict patching to valid
changes. But rather than using Coq’s dependent typing, we rely on a dedicated typing
judgment v ⊢ ∆v. Patching and diffing then must satisfy the following properties:

v : τ v ⊢ ∆v T-Patch
v ⊕ ∆v : τ

v1 : τ v2 : τ V-Diff
v1 ⊢ v2 ⊖ v1

Patching is only defined when v ⊢ ∆v and yields a value of the same type as v. Diffing is
defined for any v1 and v2 of the same type, and it yields a valid change that can be applied
to v1. When defining differential execution, it is our responsibility to define changes ∆v,
validity v ⊢ ∆v, patching ⊕, and diffing ⊖ such that these typing rules hold.

On top of these typing rules for patching and diffing, we can now stipulate the inversion
properties we require.
Property 3.1 (Patch-Diff Inversion). For any well-typed values v1 : τ and v2 : τ , patching
inverts diffing: v1 ⊕ (v2 ⊖ v1) = v2.
Property 3.2 (Diff-Patch Inversion). For any value v and valid change v ⊢ ∆v, diffing
inverts patching: (v ⊕ ∆v) ⊖ v ≡ ∆v.
Note how the latter property uses equivalence ≡ on changes rather than equality. This is
due to the fact that changes often have non-unique representations and diffing might choose
any equivalent representation. For example, inc 0 and dec 0 are equivalent but not equal.
In general, ∆v1 ≡ ∆v2 iff for all v, v ⊢ ∆v1 ↔ v ⊢ ∆v2 and v ⊕ ∆v1 = v ⊕ ∆v2.

The above properties justify our use of noc, representing no change. Specifically, for any
v, we have v ⊕ (v ⊖ v) = v and therefore noc ≡ v ⊖ v. In practice, it is usually easy to decide
if a given ∆v is equivalent to noc.

3.2 Numeric and Boolean changes
Our imperative language Imp uses unsigned integers and Boolean values. We define changes
for each type:

(value changes) ∆v ::= ∆n | ∆b

(numeric changes) ∆n ::= nocN | inc k | dec k

(Boolean changes) ∆b ::= nocB | neg

Numeric changes consist of no change (nocN), increasing (inc k), and decreasing (dec k),
where k is any natural number. Boolean changes consist of no change (nocB) and negation
(neg). Changes are only valid for an appropriately typed value, and dec k is only valid for
numbers larger or equal to k:

v : Bool
v ⊢ nocB

v : Bool
v ⊢ neg

v : Num
v ⊢ nocN

v : Num
v ⊢ inc k

v : Num v ≥ k

v ⊢ dec k

Whenever v ⊢ ∆v, we can patch v while retaining its type as required by T-Patch. Moreover,
differencing ensures v1 ⊢ v2 ⊖ v1 as required by V-Diff.

n ⊕ nocN = n

n ⊕ inc k = n + k

n ⊕ dec k = n − k

b ⊕ nocB = b

b ⊕ neg = ¬b

n ⊖ n = nocN
n ⊖ m = inc (n − m), if n > m

n ⊖ m = dec (m − n), if m > n

b ⊖ b = nocB
b ⊖ c = neg, if b ̸= c
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We have modeled these changes and their operations in Rocq, where we proved they satisfy
the respective typing rules as well as patch-diff and diff-patch inversion.

3.3 Lifting to stores
We have established how patching and diffing operate on individual values, but our imperative
programs range over variables that map to values. Therefore, we need to lift changes and
their operations from single values to entire stores σ : x → v that map variables to values.
To this end, we define differential stores ∆σ : x → ∆v, which map variables to value changes.
Differential stores must satisfy the same properties as differential values: well-typed patching
and diffing according to T-Patch and V-Diff, such that patch-diff and diff-patch inversion
hold.

We start off by requiring stores to be well-typed given a store type Γ : x → τ . We define
store typing Γ ⊢ σ and differential store validity σ ⊢ ∆σ pointwise:

∀x. σ(x) : Γ(x)
T-Store

Γ ⊢ σ

∀x. σ(x) ⊢ ∆σ(x)
V-Store

σ ⊢ ∆σ

Then the following definitions of patching and diffing satisfy T-Patch and V-Diff:

σ ⊕ ∆σ = λx. σ(x) ⊕ ∆σ(x)
σ1 ⊖ σ2 = λx. σ1(x) ⊖ σ2(x)

Patch-diff inversion holds because

σ1 ⊕ (σ2 ⊖ σ1) = λx. σ1(x) ⊕ (σ2(x) ⊖ σ1(x)) = λx. σ2(x) = σ2

and conversely diff-patch inversion is due to

(σ ⊕ ∆σ) ⊖ σ = λx. (σ(x) ⊕ ∆σ(x)) ⊖ σ(x) ≡ λx. ∆σ(x) = ∆σ(x).

Again, we have modeled differential stores in Rocq and proved the above properties formally
there. This shows how to lift changes from values to stores, which provides the foundation
for our differential semantics. The Rocq formalization is provided at

4 Differential Semantics: A Foundation for Incremental Computing

Incremental computing is all about eliminating redundant work in the face of input changes.
In the pursuit of efficiency, incremental computing tries to cut as many corners as possible
while retaining correctness. Our differential style of incremental computing is particularly
susceptible to correctness errors, because we need to capture the precise difference of each
computation output. In this section, we introduce the idea of differential semantics to capture
the incremental behavior of a program. Specifically, we develop a differential semantics for
the imperative language Imp from Section 2 with expressions and statements.

A differential semantics establishes a sound baseline for incremental computing, but
it is not usually optimal. Instead, we separately introduce optimizations for the efficient
incremental execution of programs and prove them correct with respect to the baseline
differential semantics. To support the modular definition and verification of optimizations,
we formulate the differential semantics compositionally for each language construct. But
first, let us review the standard big-step semantics of our imperative language Imp.

CVIT 2016
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σ ⊢ true ⇒ true σ ⊢ false ⇒ false σ ⊢ n ⇒ n

σ ⊢ x ⇒ σ(x)
σ ⊢ e1 ⇒ v1 σ ⊢ e2 ⇒ v2

σ ⊢ e1 ⊙ e2 ⇒ v1 ⊙ v2

σ ⊢ e ⇒ v

σ ⊢ x := e ⇒ [x 7→ v]σ
σ ⊢ s1 ⇒ σ′ σ′ ⊢ s2 ⇒ σ′′

σ ⊢ s1; s2 ⇒ σ′′

σ ⊢ e ⇒ true σ ⊢ s1 ⇒ σ′

σ ⊢ if e s1 s2 ⇒ σ′
σ ⊢ e ⇒ false σ ⊢ s2 ⇒ σ′

σ ⊢ if e s1 s2 ⇒ σ′

σ ⊢ e ⇒ 0
σ ⊢ repeat e s ⇒ σ

σ ⊢ e ⇒ n + 1 σ ⊢ repeat n s ⇒ σ′ σ′ ⊢ s ⇒ σ′′

σ ⊢ repeat e s ⇒ σ′′

Figure 2 Standard big-step reduction semantics for Imp expressions and statements.

4.1 Standard big-step semantics of Imp
We already introduced the syntax of Imp expressions, statements, and stores in Section 2.
Figure 2 shows the standard semantics for Imp using two judgments. For expressions, we
write σ ⊢ e ⇒ v to denote that expression e evaluates to value v under store σ. Expressions
can read but cannot change the content of the store. The last reduction rule for expressions
handles binary expressions e1⊙ e2. Imp supports a few binary operators ⊙ ∈ {+, −, ∗, >, exp},
and we assume that v1 ⊙ v2 follows the standard arithmetic interpretation of these operators.

For statements, we write σ ⊢ s ⇒ σ′ to denote that statement s executes under store σ,
yielding a possibly updated store σ′. In these rules, the notation [x 7→ v]σ represents the
store obtained from σ by updating the mapping of variable x to value v, while leaving all
other mappings unchanged. For repeat loops, we skip the body when the iteration count
is zero. Otherwise, we recursively evaluate the loop with a decremented count, followed by
running the body. We opted for this left-recursive loop unrolling to simplify some of the
proofs.

4.2 Differential semantics for Imp expressions
A differential semantics describes how a program’s output changes in reaction to input
changes. The inputs of our Imp programs are stores σ. We have described store changes ∆σ

in Subsection 3.3. The output of an Imp program is also a store, but we first only consider
Imp expressions. An Imp expression computes a value v, hence the differential semantics for
Imp expressions computes a value change ∆v. To this end, we define a differential reduction
relation σ, ∆σ ⊢ e ⇒∆ ∆v to compute how e’s output changes:

e ∈ {true, false}
D-Bool

σ, ∆σ ⊢ e ⇒∆ nocB
D-Num

σ, ∆σ ⊢ n ⇒∆ nocN
D-Var

σ, ∆σ ⊢ x ⇒∆ ∆σ(x)

σ, ∆σ ⊢ e1 ⇒∆ ∆v1

( σ ⊢ e1 ⇒ v1 )
σ, ∆σ ⊢ e2 ⇒∆ ∆v2

( σ ⊢ e2 ⇒ v2 )
D-BinOp

σ, ∆σ ⊢ e1 ⊙ e2 ⇒∆ ⊙∆(v1, v2, ∆v1, ∆v2)
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The first rules handle an expression e that is a Boolean or numeric constant. The value of
constant expressions can not change, hence the output is a no change (noc). A variable x

changes in accordance with ∆σ. In particular, when an input is changed, reading from that
input yields its change, which can then be propagated.

The last rule handles binary operators ⊙ and delegates their differential behavior to
dedicated functions ⊙∆. We allow these functions to use the original input values (v1, v2)
and their changes (∆v1, ∆v2). For example, for a differential multiplication m ∗ (n ⊕ inc k),
we need to know the original arguments to compute the output change inc (m ∗ k). While
our implementation supports various operators, in this paper and the Rocq formalization we
focus on establishing the core differential semantics. A complete treatment of differential
operators is outside the scope of this paper.

Note that we required the original store σ during the differential execution of expressions
only to recover the original arguments of binary operators. In places like these, we can
expect an actual implementation to cache the previous evaluation result of each operand
where needed. We highlight opportunities for caching in the reduction rules by putting
preconditions in parentheses ( cached ) and slightly shading their background.

4.3 A differential semantics for Imp statements
We define the differential semantics for statements using the relation

σ, ∆σ ⊢ s ⇒∆ ∆σ′

which executes statement s under differential store ∆σ and original store σ to yield an
updated differential store ∆σ′. The inference rules are shown in Figure 3.

Rule D-Assign evaluates the assigned expressions differentially and then updates the
differential store. The store update is a destructive update, overwriting the previous change
assigned to x. Together with rule D-Seq, this realizes change propagation behavior. For
example, assume a program x := a; y := x with ∆σ(a) = ∆v. RuleD-Seq runs the assignments
in order. The first assignment sets ∆σ(x) = ∆v because σ, ∆σ ⊢ a ⇒∆ ∆v. Then the second
assignment sets ∆σ(y) = ∆v because σ′, ∆σ′ ⊢ x ⇒∆ ∆v Note that D-Seq also runs the first
statement non-incrementally, but only to obtain σ′, which is needed as input for s2. The
highlighting of this and other preconditions in Figure 3 indicates that the precondition’s
result can be retrieved from a cache in an actual implementation.

For conditional statements, we generally distinguish two situations: branch constant and
branch switching. A conditional behaves branch-constant if the value of the condition does
not change, handled by rules D-IFtt and D-IFff. These rules simply propagate changes to the
relevant branch that was selected originally. Rules D-IFtf and D-IFft handle branch switching,
which happens when the condition’s value changes. If the original value of the condition
was true and now becomes false, then rule D-IFtf fires and performs branch switching as
introduced in Subsection 2.2. Originally, we have executed s1, but now we need to run s2.
Therefore, we execute s2 from scratch and compute how its output differs from s1. Rule
D-IFft is analogous and handles the case when the condition switches from false to true.

Finally, we provide four rules to handle repeat loops. The differential semantics for
repeat e s depends crucially on how the iteration count changes. When the differential
evaluation of e yields nocN, the iteration count remains the same as in the original execution.
In this case, we replay the loop but only do change propagation. If the iteration count is
zero (σ ⊢ e ⇒ 0), we simply return the input differential store unchanged, as no iterations
need to be replayed. For a positive count (σ ⊢ e ⇒ n + 1), we unroll the loop recursively
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σ, ∆σ ⊢ e ⇒∆ ∆v
D-Assign

σ, ∆σ ⊢ x := e ⇒∆ [x 7→ ∆v]∆σ

σ, ∆σ ⊢ s1 ⇒∆ ∆σ′

( σ ⊢ s1 ⇒ σ′ )
σ′, ∆σ′ ⊢ s2 ⇒∆ ∆σ′′

D-Seq
σ, ∆σ ⊢ s1; s2 ⇒∆ ∆σ′′

σ, ∆σ ⊢ e ⇒∆ nocB

( σ ⊢ e ⇒ true )
σ, ∆σ ⊢ s1 ⇒∆ ∆σ′

D-IFtt
σ, ∆σ ⊢ if e s1 s2 ⇒∆ ∆σ′

σ, ∆σ ⊢ e ⇒∆ nocB

( σ ⊢ e ⇒ false )
σ, ∆σ ⊢ s2 ⇒∆ ∆σ′

D-IFff
σ, ∆σ ⊢ if e s1 s2 ⇒∆ ∆σ′

σ, ∆σ ⊢ e ⇒∆ neg

( σ ⊢ e ⇒ true )

σ ⊕ ∆σ ⊢ s2 ⇒ σ2

( σ ⊢ s1 ⇒ σ1 )
D-IFtf

σ, ∆σ ⊢ if e s1 s2 ⇒∆ σ2 ⊖ σ1

σ, ∆σ ⊢ e ⇒∆ neg

( σ ⊢ e ⇒ false )

σ ⊕ ∆σ ⊢ s1 ⇒ σ1

( σ ⊢ s2 ⇒ σ2 )
D-IFft

σ, ∆σ ⊢ if e s1 s2 ⇒∆ σ1 ⊖ σ2

σ, ∆σ ⊢ e ⇒∆ nocN

( σ ⊢ e ⇒ 0 )
D-Rep-0

σ, ∆σ ⊢ repeat e s ⇒∆ ∆σ

σ, ∆σ ⊢ e ⇒∆ nocN

( σ ⊢ e ⇒ n + 1 )

σ, ∆σ ⊢ repeat n s ⇒∆ ∆σ′

( σ ⊢ repeat n s ⇒ σ′ )
σ′, ∆σ′ ⊢ s ⇒∆ ∆σ′′

D-Rep+1
σ, ∆σ ⊢ repeat e s ⇒∆ ∆σ′′

σ, ∆σ ⊢ e ⇒∆ dec k

( σ ⊢ e ⇒ n )

σ, ∆σ ⊢ repeat (n − k) s ⇒∆ ∆σ′

( σ ⊢ repeat (n − k) s ⇒ σ′ )
( σ ⊢ repeat n s ⇒ σ′′ )

D-Rep-Dec
σ, ∆σ ⊢ repeat e s ⇒∆ (σ′ ⊕ ∆σ′) ⊖ σ′′

σ, ∆σ ⊢ e ⇒∆ inc k

( σ ⊢ e ⇒ n )

σ, ∆σ ⊢ repeat n s ⇒∆ ∆σ′

( σ ⊢ repeat n s ⇒ σ′ )
σ′ ⊕ ∆σ′ ⊢ repeat k s ⇒ σ′′

D-Rep-Inc
σ, ∆σ ⊢ repeat e s ⇒∆ σ′′ ⊖ σ′

Figure 3 Differential semantics for Imp statements. Marked ( preconditions ) can be cached.

followed by a differential run of the loop body s. The resulting ∆σ′′ captures the cumulative
effect of differentially executing all iterations.

When the iteration count is decreased (σ, ∆σ ⊢ e ⇒∆ dec k), the process is more
complicated. First, we propagate the changes for (n − k) iterations to obtain ∆σ′. Then we
retrieve the original output after (n − k) iterations σ′ and patch it with ∆σ′. This represents
the updated output after (n − k) iterations, but we need to know how it changed compared
to n iterations. To this end, we compute the difference with σ′′, which is the original output
after n iterations.

Lastly, when the iteration count grows (σ, ∆σ ⊢ e ⇒∆ inc k), we use a two-phase strategy.
First, we execute the original n iterations differentially to obtain ∆σ′. However, from here on
out, we are dealing with iterations that have not occurred before. Therefore, in the second
phase, we execute the additional k iterations non-incrementally. To this end, we compute
the updated output after n iterations using ∆σ′ and feed it as input for the remaining k
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iterations. Finally, we compute the difference with σ′, which was the original output.
Example. Consider the following program and stores: repeat x {y = y + z; z = z + 1}

with initial store σ = {x 7→ 5, y 7→ 7, z 7→ 3}. The original output is σ′ = {x 7→ 5, y 7→
32, z 7→ 8}. Now consider we apply the following input changes ∆σ = {x 7→ inc 2, y 7→
inc 3, z 7→ inc 5}. The example demonstrates how differential execution handles both loop
counter changes (x) and variable changes (y, z). Specifically, here rule D-Rep-Inc is leading
the execution and proceeds in the following steps:
1. Execute original 5 iterations differentially: ∆σ′ = {x 7→ inc 2, y 7→ inc 28, z 7→ inc 5}.
2. Compute patched state after 5 iterations: σ′ ⊕ ∆σ′ = {x 7→ 7, y 7→ 60, z 7→ 13}.
3. Execute new iterations (k = 2) from σ′ ⊕ ∆σ′ to obtain σ′′ = {x 7→ 7, y 7→ 87, z 7→ 15}.
4. Compute differential output: σ′′ ⊖ σ′ = {x 7→ inc 2, y 7→ inc 55, z 7→ inc 7}.

4.4 Properties of differential semantics
Our differential semantics aims to replace recomputation with change-based execution. That
is, when the original input σ is changed to σ′ = σ ⊕ ∆σ, the differential semantics must be
able to process ∆σ directly. For this to work, we need three guarantees:
Completeness: Whenever a program can execute under the original σ and the updated σ′,

then the differential semantics must derive an output change for ∆σ.
Output validity: The output change must be valid for the original output.
From-scratch consistency Patching the original output with the output changes is consistent

with a recomputation starting with σ′.
That is: We can obtain changes using the differential semantics, the changes can be used
to patch the original output, and the patched output is correct. We have formalized these
properties in Rocq and have a mechanized proof that shows our differential semantics satisfies
them. Here, we only present the formal formulation of the properties.

In general, we only make claims about well-typed programs Γ ⊢ s. The typing relation
for statements and expressions is standard: variables are global and cannot change type.
With this, we can formulate the properties of differential semantics.

▶ Theorem 1 (Completeness). Given a well-typed program Γ ⊢ s, well-typed store Γ ⊢ σ, and
valid differential store σ ⊢ ∆σ. Whenever σ ⊢ s ⇒ θ and σ ⊕ ∆σ ⊢ s ⇒ θ′ for arbitrary θ

and θ′, then σ, ∆σ ⊢ s ⇒∆ ∆σ′ for some ∆σ′.

Proof sketch. By induction on the typing derivation of statement s. For base cases like
Assign, we directly construct differential derivations. For compound statements like Seq
and If, we apply induction hypotheses to substatements and compose their results. The
critical case is Repeat, where we handle changes to the iteration count by carefully tracking
execution states for each iteration. ◀

Completeness ensures we find output changes ∆σ′. Note that for our Imp language, the
original and update execution always succeeds for well-typed programs and stores, but richer
languages may include run-time errors and divergence For Imp, completeness ensures that
we have defined enough reduction rules to handle all well-typed execution states.

Validity guarantees that differential execution produces changes that are compatible with
the values they will be patched with. This ensures we can safely apply all changes produced
during execution.

▶ Theorem 2 (Output validity). Given a well-typed program Γ ⊢ s, well-typed store Γ ⊢ σ,
and valid differential store σ ⊢ ∆σ. Whenever σ ⊢ s ⇒ σ′ and σ, ∆σ ⊢ s ⇒∆ ∆σ′, then
σ′ ⊢ ∆σ′ is valid for the original output.
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Proof sketch. By induction on the differential semantics derivation, showing each rule
preserves validity when input changes are valid. Critical cases include branch switching and
loop optimizations, where the type system ensures changes remain compatible with their
target values. ◀

From-scratch consistency is our key correctness property—it proves that differential
execution produces the same final results as re-running the program with changed inputs.
This means users can trust that differential execution is just an optimization that does not
affect program behavior.

▶ Theorem 3 (From-Scratch Consistency). Given a well-typed program Γ ⊢ s, well-typed store
Γ ⊢ σ, and valid differential store σ ⊢ ∆σ. Whenever σ ⊢ s ⇒ σ′ and σ, ∆σ ⊢ s ⇒∆ ∆σ′,
then σ ⊕ ∆σ ⊢ s ⇒ σ′ ⊕ ∆σ′.

Proof sketch. By induction on differential semantics, proving patched original outputs match
recomputation results. The key insight relies on our change operations satisfying algebraic
properties like patch-diff and diff-patch inversion, ensuring consistency across all language
constructs. ◀

We have formally verified all three theorems using the Rocq proof assistant. The complete
mechanized proofs are available in the repository referenced in Section 3.

4.5 Mechanized Rocq formalization
We formalized the differential semantics of Imp in Rocq and proved completeness, output
validity, and from-scratch consistency. The Rocq code is available open-source.2 The Rocq
formalization consists of approximately 1,450 lines of code and was important in shaping our
theory of changes. A key challenge emerged when proving the diff-patch inversion property
(Property 3.2) introduced in Section 3. While standard equality was sufficient for proving
the patch-diff property (Property 3.1), we discovered it was inadequate for the diff-patch
case. We needed a custom equivalence relation because multiple differential values (noc, incr
0, decr 0) can represent the same change semantically

The consistency proof (Theorem 3) was particularly challenging, especially for the
increment case of repeat statements. The complexity of this case revealed that our initial
induction hypothesis wasn’t strong enough — an observation we only gained after successfully
proving all other cases. This led to a reformulation of the theorem with a stronger induction
hypothesis.

In our opinion, for the number of results we proved, our Rocq code is reasonably compact.
This was achieved through careful proof automation: we developed custom tactics for common
proof patterns and registered them as hints for Rocq’s eauto system. This automation strategy
significantly reduced the proof size.

5 Optimizations as Alternative Reduction Rules

To enhance the efficiency of our differential semantics, we introduce several optimizations
which allow us to avoid unnecessary computations during execution. We present them as
alternative reduction rules within our differential semantics. Each optimization we present is
a shortcut: it lets us compute the same result more efficiently. To ensure these shortcuts are

2 https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-formalization-ecoop25

https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-formalization-ecoop25
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correct, we must prove they are admissible. This means that whenever we use an optimization
rule to derive a result, we can also derive the same result (perhaps less efficiently) using only
the standard rules from Figure 3. Formally, we define admissibility of a rule as follows.

▶ Definition 4 (Rule Admissibility). An optimization rule R with premises P and conclusion
σ, ∆σ ⊢ s ⇒∆ ∆σ′ is admissible if for any well-typed statement s, whenever P holds, there
exists a derivation D using only standard rules that concludes σ, ∆σ ⊢ s ⇒∆ ∆σ′.

Admissibility ensures optimizations are behavior-preserving shortcuts. In the following
sections, we present several optimizations. We have proved the admissibility for each of these
rules in Rocq, working only with well-typed programs since well-typedness is essential for
ensuring the soundness of our optimizations. We categorize the various optimizations into
three main types: short-circuiting optimizations, loop optimizations, and branch switching
optimizations, and discuss each in detail.

5.1 Short-Circuiting Rules
Short-circuiting rules enable bypassing differential computations entirely under certain
conditions. We begin with a special case where all variables of a store map to no change. Then
we generalize this rule to handle programs where only referenced variables are unchanged.

Γ ⊢ s σ ⊢ s ⇒ σ′ ∀x. ∆σ(x) = noc
σ, ∆σ ⊢ s ⇒∆ ∆σ

ε-Store

The ε-Store rule shows that when every variable in the differential store maps to noc,
differential execution preserves the input differential store unchanged. This optimization is
useful because when no variables have changed at all, we can completely bypass differential
execution, avoiding differential computations entirely. The rule is fundamentally sound since
a program operating on unchanged inputs must produce unchanged outputs. The premise
σ ⊢ s ⇒ σ′ in the rule establishes that s executes successfully in the standard semantics,
which is necessary for proving the rule’s admissibility.

Consider the following program:
x = y + z
w = v * 2

With the differential store ∆σ = {x 7→ noc, y 7→ noc, z 7→ noc, w 7→ noc, v 7→ noc}, the
rule lets us skip differential execution entirely.

To handle more realistic scenarios where a differential store might contain changes to
many variables but a specific program fragment only references unchanged variables, we need
to precisely characterize when a fragment is unaffected by changes. We do this through the
No-Change relation.

▶ Definition 5 (No-Change Relation). The no-change relation for expressions Γ, ∆σ ⊢0
e e

and statements Γ, ∆σ ⊢0
s s indicates that under typing context Γ and differential store ∆σ,

all variables referenced in e or s map to nocτ of their respective type τ in Γ. This relation is
defined inductively by the rules in Figure 4.

Using this relation, we formulate our second optimization rule as follows:

Γ, ∆σ ⊢0
s s Γ ⊢ s

σ, ∆σ ⊢ s ⇒∆ ∆σ
No-Change
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Γ, ∆σ ⊢0
e true Γ, ∆σ ⊢0

e false Γ, ∆σ ⊢0
e n

τ = Γ x ∆σ(x) = nocτ

Γ, ∆σ ⊢0
e x

τ = Γ x ∆σ(x) = nocτ Γ, ∆σ ⊢0
e e

Γ, ∆σ ⊢0
s x := e

Γ, ∆σ ⊢0
s s1 Γ, ∆σ ⊢0

s s2

Γ, ∆σ ⊢0
s s1; s2

Γ, ∆σ ⊢0
e e Γ, ∆σ ⊢0

s s1 Γ, ∆σ ⊢0
s s2

Γ, ∆σ ⊢0
s if e s1 s2

Γ, ∆σ ⊢0
e e Γ, ∆σ ⊢0

s s

Γ, ∆σ ⊢0
s repeat e s

Figure 4 Inference rules for expressions and statements experiencing no change under ∆σ.

The No-Change rule generalizes the ε-Store rule: when no variables referenced in s

are affected by changes (Γ, ∆σ ⊢0
s s), any differential execution of s must preserve the

input differential store. This optimization is particularly valuable as it allows us to skip
computations even when some variables in the program have changed, as long as they aren’t
referenced in the code being optimized.

Consider our earlier program fragment in a larger context:

x = y + z
w = v * 2
# ... later code using ’a’ ...

With differential store ∆σ = {x 7→ noc, y 7→ noc, z 7→ noc, w 7→ noc, v 7→ noc, a 7→ inc 5},
the No-Change rule lets us skip the first two assignments even though a changes elsewhere in
the program. This local reasoning about variable usage avoids wasteful expression evaluation
- we don’t compute changes that would inevitably be noc.

5.2 Loop Optimization Rules
Loop constructs often dominate execution time in incremental computations. We present
three optimization rules for loops, each handling a different scenario where full recomputation
can be avoided. We start with loop idempotence, then present rules for handling changes to
iteration counts.

Γ ⊢ σ

σ ⊢ ∆σ

n ≥ 0
σ ⊢ e ⇒ n

σ, ∆σ ⊢ e ⇒∆ noc σ ⊢ s ⇒ σ σ, ∆σ ⊢ s ⇒∆ ∆σ
Loop-Idemp

σ, ∆σ ⊢ repeat e s ⇒∆ ∆σ

The Loop-Idemp rule provides a significant optimization opportunity: when we can
prove that a loop body preserves both the store and differential store in a single iteration and
there is no change in the number of loop iterations, we can completely skip executing the
remaining iterations. This is valuable because without this rule, we would need to execute
each iteration even though we know the final result would be unchanged.

Consider a loop with operations that cancel out:

repeat n:
x = (x * 1) + (y - y) # x remains unchanged through identities
y = (y + x) - x # y remains unchanged through inverse operations
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When ∆σ = {x 7→ noc, y 7→ noc}, we can skip all iterations since each iteration preserves
the store through these reversing computations. While this example is deliberately simple,
the Loop-Idemp rule becomes particularly powerful with richer language features. For
instance, in a language with arrays and objects, this rule would recognize loops that appear
to modify data structures but actually preserve their state, allowing us to skip such loops
entirely when we can prove that their operations are self-cancelling.

Our two most powerful loop optimizations address scenarios where the loop count
changes, but the loop body remains unaffected by changes in the differential store. That is,
all variables in the loop are assigned noc in the input differential store. This optimization
reduces computational effort by focusing only on the additional iterations introduced by the
change in the loop count, thereby avoiding redundant execution of the unchanged loop body.

Γ, ∆σ ⊢0
s s

Γ ⊢ s σ, ∆σ ⊢ e ⇒∆ inc m

σ ⊢ repeat e s ⇒ σ′

σ′ ⊢ repeat m s ⇒ σ′′

Loop-Incr
σ, ∆σ ⊢ repeat e s ⇒∆ (σ′′ ⊕ ∆σ) ⊖ σ′

The Loop-Incr rule handles increases in iteration count. When the loop count increases
by m iterations and the loop body references no changed variables (Γ, ∆σ ⊢0

s s), we can
optimize by doing the following.

Reusing the result σ′ of the original execution
Computing only the additional m iterations from σ′ to get σ′′

Computing the differential results as (σ′′ ⊕ ∆σ) ⊖ σ′

The differential output captures how the loop’s output differs after running the additional
iterations. With cached results from the original execution, we only compute the m new
iterations: σ′ ⊢ repeat m s ⇒ σ′′ - precisely the work that must be done. This optimization
avoids redoing unchanged iterations while still performing the genuinely new computation.
However, when any variable read in the loop body changes (for example, if an array being
summed changes), we cannot apply this optimization. This restriction is necessary - changes
to variables in the loop body would produce different results in every iteration, invalidating
our assumption that earlier iterations remain unchanged and in process invalidating the
cached result σ′.

Consider the following example where we accumulate a sum with a variable count:
sum = 0
i = 0
repeat n: # n increases from 5 to 7

sum = sum + i
i = i + 1

With ∆σ = {n 7→ inc 2, sum 7→ noc, i 7→ noc}, both sum and i are unchanged in the
input store, allowing us to safely reuse cached results. After the original 5 iterations, we
compute just 2 more iterations with values we haven’t seen before. If instead we had
∆σ = {n 7→ inc 2, i 7→ inc 1}, the change to i would affect every iteration’s computation,
forcing us to recompute all iterations with the new initial value.

When all premises remain as in the increment case, but with σ, ∆σ ⊢ e ⇒∆ dec m

replacing the increment, we obtain an elegant formulation for the decrement case as shown
below.

Γ, ∆σ ⊢0
s s

Γ ⊢ s

σ ⊢ e ⇒ n

σ, ∆σ ⊢ e ⇒∆ dec m

σ ⊢ repeat e s ⇒ σ′

σ ⊢ repeat (n − m) s ⇒ σ′′

Loop-Decr
σ, ∆σ ⊢ repeat e s ⇒∆ (σ′′ ⊕ ∆σ) ⊖ σ′
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For decreased iteration counts, the Loop-Decr rule is even more efficient than the increment
case. If we have cached the original computation, we have access to both the original output
σ′ and the intermediate store σ′′ after the (n − m)th iteration. Then, we can compute the
final result directly with just a patch and a diff operation, without any loop execution. This
makes the decrement case even more efficient than the increment case, where we still needed
to perform m additional iterations. Again, this optimization requires Γ, ∆σ ⊢0

s s, as changes
to loop body variables would invalidate our cached states.

Using the same summation example but with n decreasing from 5 to 3 and ∆σ = {n 7→
dec 2, sum 7→ noc, i 7→ noc}, we don’t need to compute anything new from the normal
execution. We can directly use our cached state after 3 iterations to compute the change.

In both the increment and the decrement case, we see that caching the original computation
is important for efficiency. We discuss various strategies for caching computations in
Section 6.1.

5.3 Branch Switching Rules
One of the main challenges in differential execution is handling branch switches efficiently, as
we typically need to execute both branches and compare their stores. Consider a common
pattern in imperative programs, where an if-statement contains only assignments to the same
variable in both branches:

if (y) {
x = z + 1

} else {
x = z - 1

}

With branch switching, the standard differential semantics would compute the result by diffing
the resulting stores corresponding to the two different branches that are taken. However,
since only variable x changes between branches, we can update just one entry instead of the
entire store. This targeted update of x based on the expressions’ difference provides orders
of magnitude in speedup over store-wide diffing, especially pronounced for large stores. We
develop two optimizations here based on this insight.

Γ ⊢ σ

σ ⊢ ∆σ

σ ⊢ e ⇒ true
σ, ∆σ ⊢ e ⇒∆ ∆v

true ⊕ ∆v = false

Γ ⊢ if e (x := e1) (x := e2)
σ ⊢ e1 ⇒ v1
σ ⊕ ∆σ ⊢ e2 ⇒ v2
σ, ∆σ ⊢ if e (x := e1) (x := e2) ⇒∆ ∆σ′

If-T-F
∆σ′ ≡ [x 7→ v2 ⊖ v1]∆σ

The If-T-F rule handles the case where a condition switches from true to false. The
rule requires both stores to be well-typed and the conditional statement itself to be well-
typed. When the conditional expression e switches from true to false and both branches
are assignments to the same variable x, we can directly compute the change to x as v2 ⊖ v1,
where v1 is e1’s value in the original store and v2 is e2’s value in the patched store.

For our example, suppose y was initially true and we have ∆σ = {y 7→ neg, x 7→
noc, z 7→ noc} causing a branch switch. Instead of recomputing the entire store, we only
need to update the entry corresponding to x as (z−1)⊖(z+1) = dec 2. However, if branches
modified different variables (e.g., x = z + 1 vs y = z - 1), this optimization cannot apply
- the changes aren’t localized to a single variable.
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Γ ⊢ σ

σ ⊢ ∆σ

σ ⊢ e ⇒ false
σ, ∆σ ⊢ e ⇒∆ ∆v

false ⊕ ∆v = true

Γ ⊢ if e (x := e1) (x := e2)
σ ⊢ e2 ⇒ v2
σ ⊕ ∆σ ⊢ e1 ⇒ v1
σ, ∆σ ⊢ if e (x := e1) (x := e2) ⇒∆ ∆σ′

If-F-T
∆σ′ ≡ [x 7→ v1 ⊖ v2]∆σ

The If-F-T rule handles the symmetric case where the condition switches from false to
true. Its structure mirrors the true-to-false case, but computes v1 ⊖ v2 since we are switching
to the first branch.

This optimization significantly improves performance when stores are large, but changes
are localized. In our Bellman-Ford implementation (Figure 5), this optimization avoids diffing
the entire shortest-path table on each branch switch within the inner loop’s conditional,
leading to substantial speedups as shown in Section 7.

6 Implementing a Differential Interpreter

In this section, we describe the implementation of a differential interpreter based on the
differential semantics. The implementation is written in Scala 3, is open source and available at
https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-implementation-ecoop25.

6.1 Caching to avoid Re-Computation
The differential semantics requires access to previous execution states when handling control
flow constructs. Consider an if statement if e s1 s2 where branch switching occurs, that is,
when the condition’s value changes from true to false or vice versa. We reiterate the relevant
rule D-IFtf from Figure 3, highlighting in gray the computations that can be cached from the
previous execution:

σ, ∆σ ⊢ e ⇒∆ neg ( σ ⊢ e ⇒ true ) σ ⊕ ∆σ ⊢ s2 ⇒ σ2 ( σ ⊢ s1 ⇒ σ1 )
D-IFtf

σ, ∆σ ⊢ if e s1 s2 ⇒∆ σ2 ⊖ σ1

Applying this rule requires performing new computations while accessing cached results
from the previous execution. Specifically, we must differentially evaluate the condition to get
neg and execute the new branch s2, while we can reuse the original condition evaluation
result and the result of executing s1. A similar requirement exists for repeat statements,
which need stores from previous iterations to enable differential execution. This dependency
on previous states explains why our differential reduction relation σ, ∆σ ⊢ s ⇒∆ ∆σ′ takes
the previous store σ as input.

Re-computing previous results and propagating old states throughout differential execution
incurs significant performance overhead. To address this, we develop an initializing interpreter
that caches execution states. However, uniquely identifying cached states requires more than
just statement identifiers, particularly for loops. Consider repeat 5 s where s executes five
times—each iteration operates on a different store and thus requires its own cached state.

We solve this through path-sensitive identifiers that precisely track loop nesting structure.
A path P starts at root R (nesting level 0) and records each enclosing loop’s iteration count.
For example, path R, 2, 1 indicates execution within the first iteration of an inner loop,
nested within the second iteration of an outer loop. Our cache maps each execution point
to its corresponding program state: cache : UID × P 7→ S, where UID uniquely identifies
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statements in the program, P captures the loop nesting context through iteration counts,
and S represents the program state we need to cache.

Our caching strategy for conditional statements preserves three key pieces: the store
before evaluating the condition, the condition’s evaluated result, and the store after executing
the chosen branch. This enables direct access to previously computed states, eliminating
redundant recomputation during differential execution.

For repeat statements, we implement two strategies: a basic strategy that caches the
initial store, iteration count, and final store, and an enhanced strategy that additionally
caches intermediate states after each iteration. The enhanced strategy enables efficient
implementation of the decrement optimization (Section 5.2) by providing direct access to
any intermediate store from the original execution, eliminating the need for additional
computation.

6.2 Additional Language-Features
We have implemented a differential interpreter that supports more constructs than present
in the formalization. In addition to integer and boolean values, we also support string values.
In the same vein, the language supports more than just the addition operator. It can call
arbitrary operators based on an operator interface which requires an init function and an
inc function:

1 trait Operator[T, U]:
2 def init(x: T): U
3 def inc(dx: Change[T]): Change[U]

The type Change[T] marks a change of value type T. Note that operators themselves can
keep track of local state that is required for implementing efficient incremental operators.
Additionally, the language enables first-order function calls of user-defined top-level functions.
Each function ranges over its own local store.

One major difference is that the language supports a mutable 2-dimensional table ranging
over integers which is global to all functions. To this end, the language supports a table-write
statement table[i, j] = e and a table-read expression table[i, j]. Note that we currently
assume that the indices cannot change between the initialization and a differential run. This
is a restriction we want to address in the future work.

6.3 Applying Optimizations
To enable efficient differential execution, we implemented various optimizations. We describe
optimizations in the formalization as overlapping rules, where we decide manually which rule
to apply. Our implementation always applies the optimization rule whenever possible. One
could imagine that there are multiple applicable optimization rules. This leads to optimization
strategies which select the optimization rule to apply at a given point at execution time. We
want to investigate optimization strategies in future work.

We implemented the short-circuiting optimizations from Section 5.1 by preemptively
computing read/written variables within statements and expressions. Because our language
supports a 2-dimensional global table, this analysis extends to tracking table cell accesses.
Building on the branch switching optimization from Section 5.3, we handle table operations
efficiently:

1 if (c) {
2 table[i, j] = e1
3 } else {
4 table[i, j] = e2
5 }
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1 def bellmanFord(numNodes: Int, src: Int): Unit {
2 decl i: Int, u: Int, v: Int, w: Int
3 i = 1
4 repeat numNodes {
5 table[0, i] = Int.Max
6 i = i + 1
7 }
8 table[0, src] = 0
9 repeat numNodes - 1 {

10 u = 1
11 repeat numNodes {
12 v = 1
13 repeat numNodes {
14 w = table[u, v]
15 if (w != 0 && table[0, v] > table[0, u] + w) {
16 table[0, v] = table[0, u] + w
17 } else {
18 skip
19 }
20 v = v + 1
21 }
22 u = u + 1
23 }
24 }
25 }

Figure 5 Bellman-Ford Algorithm implemented in our language

When branches differ only in their expressions (e1 vs e2), we can avoid expensive table
diffing operations by directly computing ∆t[(i, j) 7→ v2 ⊖ v1] where σ ⊢ e1 ⇒ v1 and
σ ⊕ ∆σ ⊢ e2 ⇒ v2.

7 Case Study: Shortest-Path with Bellman-Ford Algorithm

To evaluate how precise change descriptions enable efficient incremental computation of
dynamic algorithms, we implemented the Bellman-Ford single-source shortest-path algo-
rithm [6] in our language (Figure 5). Our implementation represents the graph using an
adjacency matrix stored in a global 2-dimensional table, with shortest path weights from
source node src to node i stored at indices (0, i).

7.1 Setup
To evaluate our differential interpreter, we designed a graph structure that exhibits interesting
incremental behavior. The graph is a cycle where we can configure its size by setting the
number of nodes X ∈ {10, 30, . . . , 130, 150}:

1 2 . . . . . . X
1 2 X − 1

−(X2 + X)

The weight of the back edge X → 1 is chosen to introduce new shortest paths, ensuring
that small input changes can trigger significant output changes. We compute shortest paths
starting from node 1 for different values of X and evaluate two types of changes:

CVIT 2016
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(b) Differential vs Baseline - Change (ii)

Figure 6 Running times of Differential Interpretation and Normal Interpretation. Differential
execution achieves significant speedups by avoiding redundant work.

(i) Adding an edge 1 → (X − 1) with weight 109. This introduces an alternative path that
does not affect the shortest path solution.

(ii) Adding six edges forming cross-connections: 1 → (X − 1), 2 → (X − 2), 6 → (X − 2),
(X − 5) → 6, (X − 3) → 3, and (X − 1) → 2, each with weight 109. Despite creating
multiple new paths, these additions do not affect the shortest path solution.

We conducted experiments on an Apple M4 Pro chip with 24GB memory running 64-bit
OSX 15.1.1 and OpenJDK 23.0.1. Using the JMH benchmarking framework3, we performed
5 warmup runs followed by 10 measurement runs for each configuration.

7.2 Results
In Figure 6, we compare the running times of differential interpretation against normal
interpretation on the patched input. On the left we show the running times for change (i)
and on the right we show them for change (ii). The differential interpreter outperforms
normal interpretation for change (i). While Bellman-Ford has a time complexity of O(X3),
the differential interpreter can skip most iterations because we employ an optimization that
skips loop iterations when the changed table entries are not affected by the iteration. Since
change (i) modifies just a single table entry without introducing new shortest paths, we can
skip almost all iterations, yielding significant running time savings. The same benefits apply
to change (ii), though to a lesser degree as fewer iterations are skippable.

A second critical optimization avoids diffing when branch switches occur, significantly
reducing the differential interpreter’s running time. Without this optimization, all branch
switches for the inner if statement within the nested repeat loops would require diffing the
old and new result tables, incurring an O(X2) cost. Instead, we apply constant-time updates
to the current delta table.

To evaluate stability over extended use, we executed 40 consecutive changes (Change
(ii)) on graphs of varying sizes (10-150 nodes). We measured performance at five points in
this sequence (1st, 10th, 20th, 30th, and 40th change), with 5 warmup and 10 measurement

3 https://github.com/openjdk/jmh

https://github.com/openjdk/jmh
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Figure 7 Running times of Initializing Interpretation and Normal Interpretation. The initial run
incurs substantial overhead due to caching.

runs per point. After filtering outliers using the interquartile range (IQR) method, our
analysis confirms that execution times remain consistent across the change sequence for
each graph size. The Coefficient of Variation (CV), which measures relative variability
as standard deviation divided by mean, is remarkably low (average 8%, maximum 13%),
indicating that our differential approach maintains stable performance throughout extended
use without degradation. While execution times scale with graph size as expected, the
consistent performance within each size category demonstrates that repeated incremental
updates do not compromise efficiency, further justifying the one-time initialization cost.

In Figure 7 we compare the running times of the initializing interpreter to normal
interpretation on the initial input. On the left we show the running times for change (i) and
on the right for change (ii). The graphs show that initialization requires significantly more
time than normal interpretation. Normal interpretation takes roughly 1.5s for processing the
initial graph where X = 150. In contrast, the initialization interpreter requires roughly 15s,
a 10x increase. This overhead comes from caching states by inserting entries into hash tables.
This overhead is an implementation artifact that we believe can be substantially reduced
through engineering improvements and smarter caching strategies.

These results demonstrate that differential interpretation of dynamic algorithms like
Bellman-Ford is feasible and can achieve order-of-magnitude speedups, provided we have: 1)
optimizations that reduce work by skipping unaffected program fragments, enabled by precise
change descriptors, and 2) efficient caching strategies to minimize initialization overhead.
Additionally, reducing initialization time remains an important area for improvement.

8 Related Work

Incremental computation has been extensively studied, with various approaches aiming to
efficiently update outputs in response to changes in inputs. In this section, we discuss work
related to our approach, namely dynamic algorithms, incremental computing by selective
recomputing, incremental computing by differential updating, and the incremental lambda
calculus.

Dynamic algorithms are designed to handle arbitrary changes to inputs by maintaining
data structures that can be efficiently updated [19]. They achieve efficiency through carefully
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designed update operations that maintain complex invariants specific to each problem domain,
as demonstrated in problems like dynamic planar convex hulls [8, 20] and dynamic minimum
spanning trees [14, 16]. While these algorithms can offer optimal incremental performance
for specific problems, their development requires significant effort and domain expertise [22].

Our approach differs by embedding incrementality into the language semantics rather
than relying on specialized data structures. Where dynamic algorithms require manual
development of update operations for each problem, our differential semantics provides a
systematic approach to deriving incremental behavior for programs written in our imperative
language. This language-based approach demonstrates how incremental computation can be
treated as a fundamental programming language feature rather than a specialized algorithmic
concern.

Selective recomputing techniques aim to reuse previous results by identifying and rerunning
only the affected parts of a computation when inputs change [10, 22]. Early methods like
function memoization [21, 1] cache function calls and reuse results, but they struggle with
programs that have internal state or complex control flow.

Self-adjusting computation [5, 4], representing the state-of-the-art in selective recomputing,
introduces sophisticated dependency tracking using dynamic dependency graphs to identify
precisely which computations need to be redone. Their change propagation algorithm
then selectively recomputes only the affected portions of these dependency graphs. This
approach has been enhanced to improve efficiency through data structure-level dependency
tracking [3] and extended to handle imperative features [2], but maintains the core mechanism
of dependency tracking. Despite these advances, the fundamental dependency tracking
approach and its inherent disadvantages remain unchanged. Adapton [13] extends this line
of work with demand-driven evaluation and better support for cyclic dependencies, but still
faces similar overhead challenges from maintaining complex runtime structures.

Where selective recomputation focuses on identifying which computations to redo through
dependency information, our differential semantics takes a fundamentally different approach
by directly modeling how changes propagate through program constructs. This direct
modeling enables more efficient handling of control flow changes: instead of rebuilding
and traversing complex dependency graphs when loop bounds or conditions change, our
semantics directly computes the precise differential effect of the modified control flow. The
key distinction is that while self-adjusting computation and its extensions determine what
to recompute, our differential semantics specifies how changes transform program states
through the language semantics itself.

The incremental lambda calculus (ILC) [9, 11] provides a theoretical foundation for
incrementalizing purely functional programs through type-directed program transformation.
For each function f , it derives a derivative function f ′ that computes output changes from
input changes, executing these derivative programs using standard semantics.

Our approach differs fundamentally from ILC by providing a differential semantics that
directly executes programs on changes without requiring program transformation. This
distinction has important practical implications - optimizing our differential semantics requires
only modifying semantic rules, while ILC must optimize its program transformation process
to generate more efficient derivative code. Another obvious difference between our approaches
is that while ILC provides powerful techniques for incrementalizing higher-order functional
programs, our differential semantics offers direct support for imperative features.

Differential updating originated in databases to maintain materialized views efficiently [7].
For each relational operator, they derive rules that translate changes to input relations into
changes to output relations, avoiding full recomputation. View maintenance systems formalize
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these as delta rules [12] with algebraic properties that ensure correctness: a delta rule applied
to input changes must produce the same result as recomputing with updated inputs. This
approach has been particularly successful for Datalog, where differential evaluation enables
efficient incremental maintenance of recursive views [18].

Our work shares the fundamental insight of deriving change-propagation rules but applies
it to programming language constructs rather than relational operators. Like database
approaches, we ensure correctness through algebraic properties, but our properties focus on
language-level operations rather than relational algebra. This enables incrementalization of
general-purpose programs while maintaining the mathematical rigor of differential database
techniques.

Differential dataflow [17] extends dataflow systems to support incremental updates through
data provenance tracking. While effective for data-parallel computations, it requires programs
to be expressed in a restricted dataflow model. Our approach provides similar benefits for
general imperative programs through language-level change tracking, making incremental
computation accessible to mainstream programming.

9 Conclusion

This paper presents differential semantics, which exploits precise change information rather
than using all-or-nothing selective recomputing. Rather than treating incrementality as
a separate concern, we embed it directly in the programming language through semantic
rules that precisely track and propagate changes. Our key contributions include a type-safe
theory of changes that ensures semantic consistency, a differential semantics for an imperative
language that handles both data and control flow changes, and a set of verified optimizations
that make this approach practical. Through our implementation as a differential interpreter,
validated on the Bellman-Ford algorithm, we demonstrate that our approach enables order-
of-magnitude speedups compared to recomputation. These results establish that principled
language design can make incremental computation both automatic and efficient. Future
work could extend these foundations to richer language features like functions and recursion,
moving toward general-purpose languages where incrementality is the default rather than a
specialized capability.
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