Abstract Interpretation of Java Bytecode in Sturdy

Stefan Marx
JGU Mainz
Germany

Abstract

We develop a framework of definitional abstract interpreters for
Java bytecode in Sturdy. Specifically, we provide a generic inter-
preter that abstractly executes Java bytecode but resorts to con-
figurable analysis components for abstracting values and effects.
From this, we can derive a concrete reference semantics for Java
bytecode and sound abstract interpreters.

CCS Concepts

« Software and its engineering — Automated static analysis.

Keywords

abstract interpretation, static analysis, Java bytecode, control flow,
data flow

ACM Reference Format:

Stefan Marx and Sebastian Erdweg. 2024. Abstract Interpretation of Java
Bytecode in Sturdy. In Proceedings of the 26th ACM International Workshop
on Formal Techniques for Java-like Programs (FIfJP °24), September 20, 2024,
Vienna, Austria. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3678721.3686226

1 Introduction

Static analysis of Java bytecode has a long tradition in the programming-

languages literature, and multiple state-of-the-art frameworks anal-
ysis frameworks target Java bytecode today. For example, Soot [10],[9],
WALA [1], and OPAL [5] construct call graphs, perform pointer
analyses, and support user-defined data-flow analyses. In this paper,
we aim to develop a new analysis framework for Java bytecode
following a different approach: definitional abstract interpretation.
A definitional abstract interpreter [3] conducts control-flow and
data-flow analysis by abstractly executing the source program.
While evaluating the source program, the definitional abstract inter-
preter triggers abstract effects (e.g., mutating the abstract heap) and
yields abstract values (e.g., intervals). At the core of this approach is
a generic interpreter, which defines the evaluator but is parametric
in how effects and values are abstracted [6]. Keidel et al. [8] showed
that the generic interpreter can not only be instantiated to define
various static analyses, but also to derive a concrete reference se-
mantics. Moreover, the instantiated analyses are sound relative
to the concrete reference semantics if the abstractions for values
and effects are sound, but independently of the generic interpreter.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FTfJP 24, September 20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1111-4/24/09

https://doi.org/10.1145/3678721.3686226

17

Sebastian Erdweg
JGU Mainz
Germany

Definitional abstract interpreter also support configurable context-
sensitive fixed-point algorithms [7] for fine-tuning the performance
of an analysis.

Recently, Brandl et al. [2] presented an open-source analysis
platform called Sturdy for definitional abstract interpreters and
showed that it scales to real-world languages and real-world pro-
grams. Sturdy consists of reusable abstractions for values, effects,
and fixed-points implemented in Scala. Brandl et al. used Sturdy to
develop a generic interpreter for WebAssembly and used it to derive
static analyses that outperformed the competition on real-world
code in terms of precision and soundness.

In this paper, we employ Sturdy to develop an abstract defi-
nitional interpreter for Java bytecode. We define a generic inter-
preter for bytecode instructions that is parametric in how values
and effects are represented and abstracted. In contrast to other
JVM analysis frameworks, we do not need an analysis IR such as
Jimple, but can describe an interpreter for the stack-based JVM
directly. In doing so, we find that many abstractions provided by
Sturdy are indeed reusable, including the abstractions for numbers,
call frames, and exceptions. However, the mapping from JVM in-
structions to these abstractions is non-trivial and requires careful
consideration. For example, the JVM features offset jumps, where
the program counter is shifted, yet we were able to model these
jumps as exceptions and reuse their abstraction. Another issues
was that definitional abstract interpreters have never been used
for an object-oriented language before. Therefore, we designed a
new reusable representation and abstraction for objects, including
their concrete reference semantics, which can be reused for other
object-oriented languages in the future.

In summary, we make the following contributions:

o We define a generic interpreter for Java bytecode, from which
we can derive a concrete reference semantics and abstract
interpreters (Section 2).

e We design a reusable interface, concrete semantics, simple
abstraction for Java-style objects (Section 3).

e We discuss lessons learnt and limitations (Section 4).

2 A Generic Interpreter for Java Bytecode

A generic interpreter is parametric in how values and effects are
represented. If defined correctly, the generic interpreter can be
instantiated with concrete values and effects to yield a concrete
interpreter, but also to obtain different abstract interpreters. In this
section, we gradually define a generic interpreter in Scala for Java
bytecode. The full code is available open source.!

Numeric values and the stack. Figure 1 shows the basic tem-
plate of the generic interpreter. The generic interpreter takes a
type parameter V, which abstracts over the actual representation

Lhttps://gitlab.rlp.net/smarx01/jvm-bytecode-in-sturdy-scala/-/tree/master/sturdy-
jvm-bytecode

https://doi.org/10.1145/3678721.3686226
https://doi.org/10.1145/3678721.3686226
https://doi.org/10.1145/3678721.3686226
https://gitlab.rlp.net/smarx01/jvm-bytecode-in-sturdy-scala/-/tree/master/sturdy-jvm-bytecode
https://gitlab.rlp.net/smarx01/jvm-bytecode-in-sturdy-scala/-/tree/master/sturdy-jvm-bytecode

FTfJP ’24, September 20, 2024, Vienna, Austria

trait GenericInterpreter[V]:
val i32ops: IntegerOps[V]
val f64ops: FloatOps[V]
val stack: OperandStack[V]
def eval(inst: Instruction): Unit = inst match
case inst: POP =>
stack. popOrAbort()
case inst: DUP =>
stack.peekOrAbort()
stack.push(v)
case inst: BIPUSH =>
stack.push(i32ops.integerLit(inst.value))
case inst: FMUL =>
val (v1,v2) = stack.pop20rAbort()
stack.push(i32ops.mul(vi,v2))
case ...

val v =

Figure 1: A basic generic interpreter for Java bytecode.

of values. It then declares abstract fields such as i32ops and stack,
which abstract over operations on values and effects. For example,
i320ps must implement IntegerOps[V], which declares a multitude
of integer operations. When instantiating the generic interpreter,
definitions of these fields must provide actual implementations of
these interfaces.

trait IntegerOps[V]:
def mul(vi: V, v2: V): V
def bitAnd(vl: V, v2: V): V

All interfaces for values and effects used in Section 2 are part of the
Sturdy library of value and effect components. This also includes
implementations of these interfaces. For example, there is an imple-
mentation IntegerOps[Int] to be used in the concrete interpreter as
well as an implementation IntegerOps[Interval] to be used in an
interval analysis. This reuse drastically reduced the development
effort for us.

The JVM is a stack-based machine: instructions obtain their
arguments and store their results on an operand stack. While other
analysis frameworks for the JVM typically rely on a stack-free IR
such as Jimple, we find definitional abstract interpreters can be
used to operate on the actual instructions. Figure 1 shows how
the generic interpreter interacts with the stack, where values are
pushed and popped as a side effect. These operations are defined
as part of the interface of the stack effect:

trait OperandStack[V] extends Effect:
def push(v: V): Unit
def popOrAbort(): V
def peekOrAbort(): V

Since the shape of the operand stack is statically decidable, this
effect does not lose precision during analysis.

Local and static variables. Local variables and method parameters
are stored in a call frame. In contrast, static variables are global
variables that are accessible from anywhere. Figure 2 shows how
we can capture both kinds of variables in the generic interpreter.

18

Stefan Marx and Sebastian Erdweg

trait GenericlInterpreter[V]:

val frame: CallFrame[Int, V] // locals are indexed
val staticVars: Store[(ObjectType,String), V1]

def eval(inst: Instruction): Unit = inst match
ISTORE =>

stack. popOrAbort ()
frame.setlLocal(inst.lvIndex, v)

case inst: FLOAD =>
val v = frame.getlLocalOrFail(inst.lvIndex)
stack.push(v)

case inst: GETSTATIC =>
lazyInitialize(inst.cls)

case inst:
val v =

val v = staticVars.read((inst.cls, inst.name))
stack.push(v)

case inst: PUTSTATIC =>
lazyInitialize(inst.cls)

stack.popOrAbort ()

staticVars.write((inst.cls, inst.name), v)

val v =

Figure 2: Local and static variables use different effects.

The key observation is that they are managed by different effects.
We introduce a call-frame effect for local variables, yet use a store
effect for static variables.

The code in Figure 2 highlights another advantage of definitional
abstract interpretation. Static variables are complex in the JVM,
because their initialization happens on demand and only once. We
can gracefully support this feature in our generic interpreter by
lazily invoking the static initializer of a class before accessing its
static fields. This way, the static initializer runs before we read a
static variable, but only when it is actually necessary.

Method invocation. We discuss the invocation of static methods
next. The invocation of virtual methods requires dynamic dispatch,
which depends on the object representation we introduce in Sec-
tion 3. However, once the target method of dynamic dispatch has
been identified, its execution resembles that of static methods.

Figure 3 shows how the generic interpreter implements method
invocation. We first find the static method named inst.name in
inst.cls with signature inst.params. We then pop one argument
value from the stack for each parameter of the method and use
the auxiliary function call. The call function initializes the local
variables of the method with default values and joins them with
the arguments in an indexed sequence. We run the instructions
of the method in a new call frame, which contains the method’s
parameters and local variables. Moreover, each method has its own
frame in the operand stack as to clearly distinguish which values
on the stack belong to which method. Function run executes all
given instructions using eval, but also handles jumps within the
method as we will discuss below. Once run finishes, we grab the
method’s return value from the stack unless the return type is void.
Then, the operand frame and call frame are discarded and method
invocation is complete.

Abstract Interpretation of Java Bytecode in Sturdy

def eval(inst: Instruction): Unit = inst match
case inst: INVOKESTATIC =>
val mth = findMethod(inst.cls,
inst.name, inst.params)
val args = stack.popNOrAbort(inst.params.size)
call(mth, args)
if (!mth.returnType.isVoidType)
stack.push(ret)

val ret =

def call(mth: Method, args: Seq[V]): V =
val locals = mth.localVariables.map(defaultValue)
(args ++ locals).zipWithIndex.map(_.swap)
frame.withNewCallFrame(vars) {
stack.withNewOperandFrame() {
run(@, mth.instructions, mth)
if (mth.returnType.isVoidType)
i32ops.integerLit(-1)
else
stack.popOrAbort ()

val vars =

}

Figure 3: Generic interpretation of static method invocation.

Fumps and exceptions. The JVM encodes control flow constructs
through conditional and unconditional jumps within a method.
Moreover, exceptions can interrupt the regular control flow of a
method. We model both features through exceptions in the generic
interpreter.

Figure 4 shows how the generic interpreter uses Sturdy’s except
effect to model jumps and throws. When evaluating an uncondi-
tional GOTO instruction, the generic interpreter uses except to issue
an exceptional control flow with the target program counter (PC).
For conditional jumps like IFEQ, the throw only occurs when the
condition is met. During abstract interpretation, the branchOps ab-
straction joins the effect of throws with the empty effect (for “skip”)
when the condition is undecidable. In this case, the abstract inter-
preter continues a sequential analysis while also performing the
jump, and it joins both results. Finally, the ATHROW instruction takes
a throwable object from the stack and throws it.

Sturdy’s exception effect is used to model exceptional control
flow of the JVM. This becomes clear when studying the run method,
which executes method bodies. Here, we use except.tryCatch to
catch and react to thrown exceptions. For Exc.Jump, we simply
continue execution at the targeted PC. But for Exc.Throw, we first
have to search for an exception handler in the current method. If
found, we continue the run at the exception handler. Otherwise,
we escalate the exception.

Summary. We have presented key excerpts of a generic inter-
preter for Java bytecode. In doing so, we were able to reuse en-
codings of values and effects provided by Sturdy. One important
omission so far is the representation of objects and operations on
them, which we address in the subsequent section.

19

FTfJP ’24, September 20, 2024, Vienna, Austria

enum Exc[V]:
case Jump(pc: Int)
case Throw(exception: V)

// in Genericlnterpreter:
val eqOps: EqOps[V, V]
val branchOps: BooleanBranching[V, Unit]
val except: Except[Exc[V], EV]
def eval(inst: Instruction): Unit = inst match
case inst: GOTO => //unconditional jump
except.throws(Exc.Jump(pc + inst.offset))
case inst: IFEQ => //conditional jump
stack. popOrAbort ()
val isEq = eqOps.equ(v, i32ops.integerLit(@))
branchOps.boolBranch(isEq) {
except.throws(Exc.Jump(pc + inst.offset))
} { /* skip */ }
case inst: ATHROW =>
stack. popOrAbort ()
except.throws(Exc.Throw(thrown))

val v =

val thrown =

def run(pc: Int, is: Map[Int, Instruction], mth:Method)=
except.tryCatch {
val currlnst = is(pc)
eval(currlnst, mth, pc)
val nextPC = currlnst.indexOfNextInstruction(pc)
run(nextPC, is, mth)
It
case Exc.Jump(targetPC) =>
run(targetPC, is, mth)
case Exc.Throw(exc) =>
getExceptionHandler(mth, pc, exception) match {
case Some(h) =>
stack.push(exception)
run(h.handlerPc, is, mth)
case None =>
except.throws(Exc.Throw(exception))

}

Figure 4: Using exceptions for jumps and JVM exceptions.

3 Object Representation and Operations

The representation of and operations on objects is crucial in any
JVM analysis. To the best of our knowledge, definitional abstract
interpreters have never been used to analyze an object-oriented
language before. In particular, Sturdy does not provide support
for objects. This paper contributes the design and implementation
of a reusable representation for objects for Sturdy. We also added
support for mutable arrays and their operations, but elided arrays
from the remaining presentation.

3.1 Concrete Object Operations

Figure 5 shows our language-independent interface for interoperat-
ing with statically typed objects. The interface is highly parametric,
in particular:

FTfJP ’24, September 20, 2024, Vienna, Austria

trait ObjectOps[Cls,Mth,AllocSite,FieldSite,0OV,V,Ty]:

type FID = (Cls,String)

type MID = (Cls,String)

def create(cls: Cls, s: AllocSite,
vals: Seq[(FID,FieldSite,V)]1): OV

def getField(obj: OV, f: FID): V

def setField(obj: Ov, f: FID, v: V): Unit

def invoke(obj: OV, m: MID, args: Seq[(V,Ty)1)
(call: (OV,Mth,Seq[Vl) => V): V

Figure 5: A generic representation of object operations.

e Cls represents the class/type of the object. For the JVM, this
is the object’s classfile.

e Mth is the method representation used by Cls.

e AllocSite is the (context-sensitive) allocation site of the ob-
ject. This is used by analyses to collapse objects that should
be treated the same.

e FieldSite is the (context-sensitive) allocation site for fields.
This is used for configuring field-sensitivity.

e 0V is the representation of object values.

o Vis the representation of field and argument values.

e Ty is the static type of method arguments, used in invoke for
resolving overloaded methods.

In ObjectOps, function create yields a new object value, given a
class, an allocation site, and a sequence of field values. Given an
object value, getField and setField can be used to read and write
field values for field f in declaring class cls. Finally, we can use
invoke to perform dynamic dispatch: Given an object value, the
name of a method, and a sequence of argument values with their
static types, invoke finds the target method(s) and calls them. During
analysis, this can lead to multiple method invocations, using call
on each target method and joining their results.

It is instructive to study the concrete reference semantics of
ObjectOps. We provide such a concrete semantics in Figure 6 for the
JVM. Specifically, we model objects as immutable containers Obj
that (i) are identified by an object ID, (ii) know their classfile, and
(iii) store an address for each field. The values of fields are not part
of the object itself, but stored in the heap. This way, we can mutate
field values without having to exchange the object representation.
When creating a new object, we first allocate an object ID and an
address for each field, ignoring the allocation sites, which are only
necessary during abstract interpretation. We then store the initial
value of each field in the store. The allocation functions allocO and
allocF are parameters to the ConcreteObjectOps, as is the store for
field values. The remaining object operations are straightforward.

3.2 Generic Interpretation with Object
Operations

We provided an interface for object operations. With this interface,
we can now extend our generic interpreter to support instructions
for creating objects, accessing fields, and invoking virtual methods.

Figure 7 shows how the generic interpreter uses ObjectOps to
implement object creation and virtual calls. But first, we require a

20

Stefan Marx and Sebastian Erdweg

type OID = Int
type Addr = Int
type FID = (ClassFile, String)

type FT = FieldType

case class Obj(oid: 0ID, cls: ClassFile,
fields: Map[FID, Addrl)

class ConcreteObjectOps[V, AllocSite, FieldSite]
(allocO: Allocation[0ID],
allocF: Allocation[Addr],
store: Store[Addr, V1)
extends ObjectOps[ClassFile, Method,
AllocSite, FieldSite, Obj, V, FTI:
def create(cls: ClassFile, s: AllocSite,
vals: Seq[(FID,FieldSite,V)]1): Obj =
val oid = allocO()

val fields = vals.map { (f,site,v) =>
val addr = allocF()
store.write(addr, v)
(f,addr)

}.toMap

Object(oid, cls, fields)
def getField(obj: Ob, f: FID): V =
store.read(obj.fields(f))
def setField(obj: Obj, f: FID, v: V): Unit
store.write(obj.fields(f), v)
def invoke(obj: Obj, m: (ClassFile,String),
args: Seq[(V,FT)1)
(call: (Obj,Mth,SeqlV]) => V): V
val mthSig = args.map(_._2)
val mth = obj.cls.findNextMethod(m, mthSig)
call(obj, mth, args.map(_._1))

Figure 6: A concrete reference semantics for ObjectOps.

specialized implementation of ObjectOps for JVM classfiles, meth-
ods, and field types, which we reuse from OPAL [5]. Then, we can
interpret the NEW instruction:

(1) Fetch the classfile from the NEW instruction.

(2) The instruction serves as allocation site for object IDs.

(3) Find relevant field declarations in the class hierarchy.

(4) Compute the initial field values.

(5) Use objectOps to create an object value and push that object
value on the stack.

For virtual calls, we fetch the number of required arguments from
the stack and combine them with the static parameter types, used
for overload resolution. Additionally, we fetch the receiver object
from the stack. Then, we use objectOps to invoke the method of the
given name. For each found target method mth, we use call from
Figure 3 to run the method’s body, but adding the receiver object o
to the arguments as.

Note that our implementation currently does not support all
intricacies of the JVM for virtual calls. For example, we do not
correctly identify all error cases and do not support synchronization
monitors. But since the resulting generic interpreter code resembles

Abstract Interpretation of Java Bytecode in Sturdy

val objectOps: ObjectOps[ClassFile, Method,
InstructionSite, FieldSite, V, V, FieldTypel

def eval(inst: Instruction): Unit = inst match
case inst: NEW =>

val cf = inst.objectType

val site = InstructionSite(inst)

val allFields = ... // fields in cf and superclasses
val fields = allFields.map { fld =>

((fld.declaringClass, fld.name)
, FieldSite(site, fld)
, defaultValue(fld.fieldType))

}
stack.push(objectOps.create(cf, site, fields))

case inst: INVOKEVIRTUAL =>
val args = stack.popNOrAbort(inst.params.size)
val argsTyped = args.zip(inst.paramTypes)
val obj = stack.popOrAbort()
val (cls, name) = (inst.cls, inst.name)
val ret = objectOps.invoke(obj, cls, name, args) {

(o, mth, as) => call(mth, o +: as)
}
if (!mth.returnType.isVoidType){
stack.push(ret.get)
}
def call(mth: Method, args: Seq[V]): V =
. // defined in Figure 3

Figure 7: Generic interpreter for dynamic dispatch and NEw

a standard interpreter closely, we believe we can extend the generic
interpreter accordingly.

3.3 Abstract Object Representations and
Operations

By choosing abstract instantiations for ObjectOps and the other
value and effect interfaces, the generic interpreter becomes an
abstract interpreter. Moreover, the generic interpreter is sound
by construction, it is sufficient to reason about value and effect
instantiations [6]. Here, we illustrate how to define an abstraction
for ObjectOps.

Figure 8 shows an abstract semantics for ObjectOps that imple-
ments a Class Hierarchy Analysis (CHA) [4]. Specifically, we use
TyObj to represent abstract objects with their type cls and nullabil-
ity information mayNull. When creating a new object, the abstract
object carries the precise run-time type. But later during analysis,
abstract objects may need to be joined such that their type repre-
sents an upper bound on the actual run-time type. When reading
a field, we take the declared type of the field and produce the top
abstract value for that type. For example, Tyobj(cls, true) is the
top abstract value for reference type cls. For invoke, we analyze the
class hierarchy to find all implementations of m declared in c1s com-
patible with the object type obj.cls. Specifically, we consider the
closest implementation of min obj.cls or one of its supertypes, and
also all implementations of m in subclasses of obj.cls. We then use

21

FTfJP ’24, September 20, 2024, Vienna, Austria

type FT = FieldType
case class TyObj(cls: ClassFile, mayNull: Boolean):
def join(that: TyObj): TyObj =
TyObj(this.cls.leastSuperType(that.cls),
this.mayNull || that.mayNull)

class TypeObjectOps[V, AllocSite, FieldSite]
extends ObjectOps[ClassFile, Method,
AllocSite, FieldSite, TyObj, V, FT]:
def create(cls: ClassFile, s: AllocSite,
vals: Seq[(FID,FieldSite,V)]1): TyObj =
TyObj(cls, false)
def getField(obj: TyObj, f:FID): V =
val cls = f._1
topValue(cls.getFieldType(f._2))
def setField(obj: TyObj, f: FID, v: V): Unit =
{ } // do nothing
def invoke(obj: TyObj, m:(ClassFile,String),
args: Seql(V,FT)1)
(call: (TyObj,Mth,Seq[V]l) => V): V
val mthSig = args.map(_._2)
val supMth = obj.cls.findNextMethod(m, mthSig)
val subMths = for (sub <- obj.cls.subClasses
mth <- sub.findMethod(m, mthSig))
yield mth
val mths = supMth +: subMths
val argVals = args.map(_._1)
mapJoin(mths, mth => call(obj, mth, argvals))

Figure 8: An abstract semantics for ObjectOps using types.

Sturdy’s mapJoin(xs, f) function, which runs f on each element in
xs and joins the results and effects of f. This way, we consider all
potential call targets in mths.

4 Limitations and Improvements

In this section, we want to discuss the limitations of our generic
interpreter for Java bytecode, which we are addressing in ongoing
work. We also discuss lessons learnt about using Sturdy and, in
particular, how we have been able to improve the core of Sturdy,
better supporting new languages.

Limitations of the bytecode interpreter. We apply the method-
ology of definitional abstract interpretation to arrive at a sound
analysis for Java bytecode. However, some features of the JVM
make this inherently difficult, which is why many static analyses
forsake soundness. Instead, we opt for a sound yet incomplete ap-
proach. For example, we only support selected few native functions
in our implementation and abort analysis for unsupported ones.
Our interpreter is also incomplete for reflection and dynamic class
loading. Hence, our analysis fails to apply to realistic projects so
far. But, we believe supporting many native functions and other
complex features is feasible, because we can often implement their
behavior as part of the generic interpreter. For example, we im-
plemented arraycopy in terms of the ArrayOps interface, which we
introduced to abstract from array representation and operations.
Therefore, an analysis that instantiates our generic interpreter does

FTfJP ’24, September 20, 2024, Vienna, Austria

not have to define the meaning of array copy, but can reuse the
generic interpretation.

Improvements to Sturdy. While implementing the generic inter-
preter for JVM Bytecode in Sturdy, we have learned multiple lessons
and used them to improve the platform. These improvements not
only help for Java bytecode, but can be reused for other languages to
be analyzed in the future. First, we added new value interfaces for ar-
rays and objects with their operations, which did not exist. Second,
we added an interface for run-time type checking, i.e., instanceOf.
Third, we improved a few existing value interfaces: We added sup-
port for constructing NaN floating-point values and reworked how
division by zero is treated for integer values. Specifically, Sturdy has
never been used to analyze a language with recoverable division-by-
zero errors. For example, the Sturdy interpreter for WebAssembly
(correctly) aborts execution when the denominator is zero [2]. In-
stead, our interpreter for Java bytecode issues an exception, which
can be caught. Overall, we found that Sturdy was well-equipped to
support Java bytecode apart from these necessary improvements.

5 Related Work

In this section we want to discuss some of our design decisions
and their benefits in comparison to other state-of-the-art analysis
frameworks. We will primarily focus on three aspects.

A major difference is that we analyze the bytecode directly in
its original stack-based form. Since all operations on the stack are
decidable, we don’t add any imprecision while doing so. Specifically,
the definitional abstract interpreter precisely tracks how a pushed
value flows to an instruction that pops it. Often, frameworks use
an intermediate representation like Jimple [10], which lifts byte-
code to three-address code with variables. For example, Soot [9]
processes Jimple and WALA [1] processes a similar intermediate
representation called WALA IR.

Another aspect that distinguishes our work is that we are not
dependent on a pre-constructed control flow graph. Instead, we an-
alyze bytecode by interpreting it in an abstract machine. In fact, our
definitional abstract interpreter does not even construct a control-
flow or call graph, but explores the control-flow eagerly on-the-fly.
This made it relatively simple to support branching and exceptional
control flow. To ensure termination, Sturdy provides a library of
fixed-point combinators, which track repeating abstract interpreta-
tions and compute a fixed point [7].

Another significant advantage of our approach is that it is easy
to add new abstractions of values and effects. The modularity of
these abstractions makes writing new analyses quick and easy.

Finally, our work confirmed that Sturdy’s abstract interpreters
can be constructed modularly from analysis components for values
and effects. This significantly reduced our workload for building an
abstract interpreter for Java bytecode. While other frameworks like
OPAL [5] also provide modular analysis components for analyzing
Java bytecode, our framework also provides these modular com-
ponents for easy extension to other languages, which we have not
observed in other frameworks. Like already shown in this paper,
we were able to reuse effect and value abstractions that have been

22

Stefan Marx and Sebastian Erdweg

developed for WebAssembly [2]. Indeed, we only had to design a

few new abstractions, including those for objects and arrays. These
are now part of the core library of Sturdy and can be reused for

other languages in the future.

6 Conclusion

In this work, we introduced a novel approach for analyzing an
object-oriented language using definitional abstract interpreters.
We showed how to construct a generic interpreter by taking advan-
tage of value and effect interfaces already provided by our analysis
platform Sturdy. We also showed how to extend Sturdy with new
value interfaces to handle object values. Furthermore, we demon-
strated that Sturdy provides lots of reusable abstractions for values
and effects, and we added new abstractions for objects and arrays
to Sturdy.

Acknowledgement

We thank David Klopp, Armand Lego, André Pacak, Prashant Ku-
mar and the anonymous reviewers for their valuable feedback.
This work is supported by the European Research Council (ERC)
under the European Union’s Horizon 2023 (Grant Agreement ID
101125325).

References

[1] [n.d.]. WALA - T.J. Watson Libraries for Analysis. https://github.com/wala/WALA
[2] Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen. 2023. Mod-
ular Abstract Definitional Interpreters for WebAssembly. In 37th European
Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Sal-
vaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 5:1-5:28.
https://doi.org/10.4230/LIPICS. ECOOP.2023.5

David Darais, Nicholas Labich, Phic C. Nguyen, and David Van Horn. 2017.
Abstracting definitional interpreters (functional pearl). Proceedings of the ACM
on Programming Languages 1, ICFP (Aug. 2017), 1-25. https://doi.org/10.1145/
3110256

[4] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In ECOOP’95 - Object-
Oriented Programming, 9th European Conference, Arhus, Denmark, August 7-11,
1995, Proceedings (Lecture Notes in Computer Science, Vol. 952), Walter G. Olthoff
(Ed.). Springer, 77-101.

Dominik Helm, Florian Kiibler, Michael Reif, Michael Eichberg, and Mira Mezini.
2020. Modular collaborative program analysis in OPAL. In Proceedings of the 28th
ACM 3Foint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 184-196. https:
//doi.org/10.1145/3368089.3409765

Sven Keidel and Sebastian Erdweg. 2019. Sound and reusable components for
abstract interpretation. Proc. ACM Program. Lang. 3, OOPSLA (2019), 176:1-176:28.
https://doi.org/10.1145/3360602

Sven Keidel, Sebastian Erdweg, and Tobias Hombiicher. 2023. Combinator-Based
Fixpoint Algorithms for Big-Step Abstract Interpreters. Proc. ACM Program. Lang.
7, ICFP (2023), 955-981. https://doi.org/10.1145/3607863

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional
soundness proofs of abstract interpreters. Proc. ACM Program. Lang. 2, ICFP
(2018), 72:1-72:26. https://doi.org/10.1145/3236767

Patrick Lam, Eric Bodden, Ondfej Lhotak, and Laurie J. Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. https://api.semanticscholar.
org/CorpusID:11439274

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (Mississauga, Ontario, Canada) (CASCON ’99). IBM Press, 13.

[5

[10

Received 2024-06-26; accepted 2024-07-24

https://github.com/wala/WALA
https://doi.org/10.4230/LIPICS.ECOOP.2023.5
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3360602
https://doi.org/10.1145/3607863
https://doi.org/10.1145/3236767
https://api.semanticscholar.org/CorpusID:11439274
https://api.semanticscholar.org/CorpusID:11439274

	Abstract
	1 Introduction
	2 A Generic Interpreter for Java Bytecode
	3 Object Representation and Operations
	3.1 Concrete Object Operations
	3.2 Generic Interpretation with Object Operations
	3.3 Abstract Object Representations and Operations

	4 Limitations and Improvements
	5 Related Work
	6 Conclusion
	References

