
Separate Compilation and Partial Linking:
Modules for Datalog IR

David Klopp
JGU Mainz
Germany

André Pacak
JGU Mainz
Germany

Sebastian Erdweg
JGU Mainz
Germany

Abstract
In recent years, Datalog has sparked renewed interest in
academia and industry, leading to the development of nu-
merous new Datalog systems. To unify these systems, recent
approaches treat Datalog as an intermediate representation
(IR) in a compiler framework: Compiler frontends can lower
di�erent Datalog dialects to the same IR, which is then op-
timized before a compiler backend targets one of many ex-
isting Datalog engines. However, a key feature is missing in
these compiler frameworks: an expressive module system.
In this paper, we present the �rst module system for a

Datalog IR. Our modules are statically typed, can be sepa-
rately compiled, and partially linked to form “bundles”. Since
IR modules are generated by a compiler frontend, we rely
on explicit declarations of required and provided relations
to maximize the decoupling between modules. This also al-
lows modules to abstract over required relations to o�er
reusable functionality (e.g., computing a transitive closure)
that can be instantiated for di�erent relations in a single
Datalog program. We formalize the module system, its type
system, and the linking algorithm. We then describe how
di�erent usage patterns that occur in Datalog dialects (e.g.,
inheritance, cyclic imports) can be expressed in our IR mod-
ule system. Finally, we integrate our module system into
an existing Datalog compiler framework, develop a Sou�é
compiler frontend that translates Sou�é components to IR
modules, and demonstrate its applicability to a large Doop
analysis.

CCSConcepts: • Software and its engineering!Reusabil-
ity; Modules / packages; • Theory of computation!
Constraint and logic programming.

Keywords: Datalog, module system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’24, October 21–22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1211-1/24/10
h�ps://doi.org/10.1145/3689484.3690737

ACM Reference Format:
David Klopp, André Pacak, and Sebastian Erdweg. 2024. Separate
Compilation and Partial Linking: Modules for Datalog IR. In Pro-
ceedings of the 23rd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE ’24), Oc-
tober 21–22, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
13 pages. h�ps://doi.org/10.1145/3689484.3690737

1 Introduction
Datalog has gained signi�cant attention from both academia
and industry in recent years. While Datalog was originally
designed as a database query language, it is nowadays used
for large and complex tasks, such as program analysis [8, 23],
network monitoring [1], and distributed computing [2–4].
This revival of Datalog has led to various Datalog systems
that improve the programmability, performance, and expres-
siveness of Datalog [4, 6, 7, 11, 18]. However, each system
o�ers its unique �avor of Datalog, preventing interoperabil-
ity between them. For example, Sou�é [11] extends Datalog
with algebraic data types and provides a high-performance
C++ evaluation engine. Formulog [7] extends Datalog with
functions and SMT constraints, and it provides its own exe-
cution engine. Ascent [21] provides a macro-based library to
integrate Datalog into Rust. bddbddb [24] is a simplistic Dat-
alog dialect, that uses binary decision diagrams to evaluate
programs. Unfortunately, a program written in bddbddb can-
not run in Sou�é, and a Sou�é program cannot be executed
using Ascent.
To target this fragmentation, a unifying framework is

needed that treats Datalog as an intermediate representation
(IR) instead of a programming language. The IncA frame-
work [13] o�ers such a compiler framework.1 It includes
frontends for Sou�é, bddbddb [24], as well as a functional
logic language [18]. These Datalog dialects are translated
into a common, typed intermediate Datalog representation
that can be optimized. Afterward, a compiler backend han-
dles the execution of the IR code, usually by translation to
an existing Datalog system. Although this compiler frame-
work helps to unify Datalog compilers and supports cross-
compilation, it does not yet allow for proper interoperability
between program fragments written in di�erent dialects.
The main issue is the lack of a module system for the

Datalog IR. The goal of this paper is to provide a module
system that is expressive enough to be a compilation target

1h�ps://gitlab.rlp.net/plmz/inca-scala

https://orcid.org/0009-0006-9848-2029
https://orcid.org/0000-0001-7441-6955
https://orcid.org/0000-0002-1974-5956
https://doi.org/10.1145/3689484.3690737
https://doi.org/10.1145/3689484.3690737
https://gitlab.rlp.net/plmz/inca-scala

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA David Klopp, André Pacak, and Sebastian Erdweg

for di�erent Datalog dialects and to enable interoperability
between them. This is in contrast to existing user-facing
module systems that must consider programmability by a
user in their design. Our module system must address the
following challenges:

Separate compilation. The module system must orga-
nize Datalog de�nitions into modules such that separate
checking and compilation is possible. In particular, it must
be possible to lower and optimize modules separately.

Interoperability. Currently, there is no way to use IR
code from di�erent dialects in a single program. For exam-
ple, IR code generated from Sou�é and IR code generated
from a functional logic language are isolated instances that
cannot interact. A module system must allow modules to
interoperate, no matter the frontend that generated them.

Open modules. We need a module system that is expres-
sive enough to embody the component architecture used
by existing Datalog dialects. For example, Sou�é supports
inheritance between components and di�erent scoping lev-
els. This necessitates the system to support open modules,
which formulate external requirements.

Partial linking. A linker weaves separately compiled
modules into a larger module. We follow classic module sys-
tem formulations [9, 12] in allowing partial linking, where
linked modules may still contain requirements to be resolved
later. However, while these prior works describe linking sep-
arately from the module de�nitions, this amounts to build
scripts in practice, which hurts program understandabil-
ity. Instead, the module system should support linking as a
language-integrated feature, such as import statements.

Compositional validity. When partially linking a mod-
ule stepwise, we need to ensure that the module remains
valid after each step. The linking of well-typed modules must
yield a well-typed module, given that the requirements are
met appropriately.

For example, consider we want to implement an abstract
interpreter for Java in IncA’s functional Datalog language.
But to resolve variables, we want to reuse the con�gurable
points-to analysis implemented by Doop [8] in Sou�é’s Data-
log language [11]. Figure 1 illustrates how ourmodule system
supports such interaction:
1. We compile the Sou�é modules separately to IR modules.
2. We use partial linking to bundle the compiled Sou�é

modules into a single big IR module, which still contains
some requirements. In our example, the Doop analysis
uses this feature to allow client-side con�guration of its
context sensitivity.

3. We separately compile the Functional IncAmodules, which
import the bundled IRmodule generated from Sou�é code.
Here, interoperability takes place.

Points-to in Soufflé

separate
compilation

prov P
req A

prov Q

req B

partial linking

req A
req B
P, Q

Abstract Interpreter in Functional IncA

separate
compilation

partial linking

req B
P, Q, R

import

A

prov R

dialect
module

ir
module

compilation
unit

Figure 1. Separate compilation and partial linking across
di�erent Datalog dialects.

4. Finally, we use partial linking again, which resolves re-
quirement A of the bundled IR module but leaves require-
ment B open. Since the Functional IncA modules import
the bundled module, linking generates a new bundled IR
module that contains all previous de�nitions.

In this paper, we present a module system that solves
the above challenges for a Datalog IR. Besides de�nitions,
modules can contain three new declarations. A declaration
require A : T indicates that a module needs a Datalog rela-
tion A with signature T. The requirement must be resolved
when linking the surrounding module. A declaration
provide B : T indicates that a module exports a Datalog re-
lation B with signature T. Relation B must be de�ned in the
surrounding module. And �nally, a declaration import M as

q with {A = R} triggers linking: All provided declarations of
M become available with pre�x q in the surrounding module.
However, such an import is only valid when providing bind-
ings for all requirements of M. We formalize the syntax, the
static semantics, and the linking of our module system.
We also study how common usage patterns of source-

language module systems can be encoded in our IR module
system. In particular, we investigate how cyclic imports,
inheritance, and nested modules can be represented in our
module system. This demonstrates the expressiveness of the
module system. We have implemented the module system
by extending the IncA compiler framework for Datalog. The
implementation checks modules, compiles them separately,
and links them in accordance with the formalization. Finally,
we have added support for compiling Sou�é and its complex
components to Datalog IR modules, which enabled us to do
separate compilation, partial linking, interoperability with
an existing Doop analysis as indicated in Figure 1.

Separate Compilation and Partial Linking: Modules for Datalog IR GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

module Graph

declare edge: Int ⇥ Int

provide edge: Int ⇥ Int

edge(1,2). edge(2,3). edge(3,4).

module Path

require E: Int ⇥ Int

declare path: Int ⇥ Int

provide path: Int ⇥ Int

path(x,y) :- E(x,y).

path(x,y) :- E(x,z), path(z,y).

Figure 2. Datalog modules that can be separately compiled.

In summary, we present the following contributions:
• We design a module system for Datalog IR that sup-
ports separate compilation, partial linking and allows
modules to abstract over relations (Section 2).

• We formalize the static semantics and linking process
of the module system (Section 3).

• We describe how complex usage patterns can be en-
coded in our module system (Section 4).

• We implement our module system in the IncA compiler
framework. Finally, we showcase its applicability with
two case studies: �rst, we compile a Doop analysis
written in Sou�é into multiple Datalog IR modules
that we link to a bundle, and second, we use a Sou�é
points-to analysis in Functional IncA to implement an
escape analysis (Section 5).

2 Modular Logic Programming in Datalog
Datalog programs de�ne relations through inference rules.
Datalog rules take the form '(C) :� 01, . . . ,0= , where '(C)
is called the head of the rule and the atoms 08 make up the
body of the rule. Semantically, relation ' contains a tuple (C)
if all atoms 08 hold and all free variables in term C are bound
by the atoms. Rules without atoms describe facts that hold
unconditionally. A Datalog program is a collection of rules.

In this section, we introduce the constructs of our module
system by example and highlight a few key design aspects.

2.1 Open Datalog Modules and Separate Compilation
We enrich Datalog with notation for modules as illustrated in
Figure 2. Eachmodule has a name and body, which consists of
entries. Module Graph in Figure 2 has 5 module entries. First,
the module declares a relation edgewith its type.2 Second, the
module marks edge as provided, meaning that other modules
will be able to query edge. Third, the module de�nes edge

through three Datalog rules, providing three facts.
Based on this graph, wewant to compute the transitive clo-

sure of edge in a relation path. Without modules, edge and path

2We consider explicitly typed Datalog programs so that we can validate
them during separate compilation. Most Datalog systems used in practice
have type annotations or types can be easily inferred.

module App

import Graph as g

import Path as p with { E=g.edge }

declare cyclic: Int

cyclic(x) :- p.path(x,x).

(a) Before linking

module App

declare g.edge: Int ⇥ Int

g.edge(1,2). g.edge(2,3). g.edge(3,4).

declare p.path: Int ⇥ Int

p.path(x,y) :- g.edge(x,y).

p.path(x,y) :- g.edge(x,z), p.path(z,y).

declare cyclic: Int

cyclic(x) :- p.path(x,x).

(b) After linking
Figure 3. Imports lead to linking, which yields a newmodule
with inlined dependencies.

have to be de�ned together and compiled together. Instead,
we can use modules to isolate their de�nitions as shown in
Figure 2. Module Path requires a relation E with its expected
type. Requirements are not imports: They are not resolved
right away but remain abstract until linking. However, the
requirement provides su�cient information that the remain-
der of the Path module can be de�ned and validated. Here,
module Path de�nes a relation path that computes the tran-
sitive closure over the abstract E. We call modules like Path

that have unresolved requirements open modules. In contrast,
Graph is a closed module.
Modules Path and Graph can be de�ned in isolation, vali-

dated in isolation, and compiled in isolation. For example,
we would detect if path used E inconsistently, and an optimiz-
ing Datalog compiler could select a specialized backing data
structure for the transitive closure computation implemented
by path, which can improve performance considerably [20].
Moreover, the module system makes Datalog more expres-
sive: We e�ectively de�ned a parametric transitive closure
relation over E, which is not possible in standard Datalog.

2.2 Language-Integrated Linking
Datalog modules need to be linked before the code can be
executed. In our module system, linking is triggered through
import declarations that occur in amodule. This is in contrast
to prior approaches in theory [9, 12] and practice (e.g., the C
language), where separate compilation requires build scripts
to enumerate sets of modules to be linked. Build scripts are
known to be burdensome for software maintenance [15],
which is why we rather include imports.

Figure 3 shows a linking example. Module App imports the
two modules Graph and Path we de�ned above in Figure 2.
Each import declares the name of the imported module as

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA David Klopp, André Pacak, and Sebastian Erdweg

module SubgraphPath

import Graph as g

require inSubgraph: Int

declare subEdge: Int ⇥ Int

subEdge(x,y) :- g.edge(x,y),inSubgraph(x),inSubgraph(y).

import Path as p with { E=subEdge }

provide p.path: Int ⇥ Int

(a) Before linking

module SubgraphPath

declare g.edge: Int ⇥ Int

g.edge(1,2). g.edge(2,3). g.edge(3,4).

require inSubgraph: Int

declare subEdge: Int ⇥ Int

subEdge(x,y) :- g.edge(x,y),inSubgraph(x),inSubgraph(y).

declare p.path: Int ⇥ Int

p.path(x,y) :- subEdge(x,y).

p.path(x,y) :- subEdge(x,z), p.path(z,y).

provide p.path: Int ⇥ Int

(b) After linking
Figure 4. Imports lead to linking, which yields a newmodule
with inlined dependencies.

well as a local name used to qualify the relations of the
imported module. Since Graph is a closed module, we can
import it as is. Through the import, all provided relations of
Graph become available locally, but with pre�x g as a quali�er.
For Graph, we only obtain one relation: g.edge.
The import of Path is more complex, because Path is an

open module. We designed our module system to enforce
that every import provides bindings for all requirements of
the imported module. Module Path has one required relation
E, which must be assigned as part of the import declaration.
Indeed, we bind E=g.edge, thus linking path to g.edge. We can
then use p.path locally, since it was provided by Path. In our
example, we de�ne a new relation cyclic that collects all
nodes that have a path to themselves.

The compilation of a module with imports triggers linking.
Linking can be thought of as a preprocessor step, where im-
ported modules are being inlined and relations are renamed
accordingly. Indeed, it is possible to import the same module
multiple times, for example, to compute the transitive closure
path over di�erent graphs. Crucially, the result of linking is
yet again amodule, which can later be linked with other mod-
ules compositionally. We show the result of linking for our
example at the bottom of Figure 3. While relations edge and
path have been renamed to include the local module name as
a pre�x, requirements have been eliminated and substituted
according to the bindings of the import declaration.

2.3 Partial and Compositional Linking
In the previous example, we used linking to build an exe-
cutable application. However, linking can also be used to

form what we call bundles. A bundle combines multiple mod-
ules into a single unit that can be used as a library in other
modules. To retain expressivity, bundles should still be able
to abstract over other relations. And bundles should be able
to selectively re-export de�nitions. Our module system sup-
ports such bundles, even though it does not have a dedicated
language feature for it.
Consider the example in Figure 4. We de�ne a module

SubgraphPath that computes the transitive closure over a sub-
graph. The exact subgraph is not known but will be provided
by the required inSubgraph relation. We then de�ne a relation
subEdge, which selects those edges, where both nodes are in
the subgraph. Only then we import the Path module, using
the subEdge relation to bind E. Finally, the SubgraphPathmodule
re-provides p.path to its clients.

The linked SubgraphPathmodule illustrates bundling.While
the linking process is the same as before, the resulting mod-
ule has two novel aspects. First, the linked module contains
a requirement inSubgraph, which means we have an open
module after linking. Second, the linked module contains a
provide declaration, which means we can import the module
elsewhere to use the provided relation. Both aspects clearly
indicate: a bundle is a library, not an executable application.

Two features of our module system enable bundling: par-
tial and compositional linking. Partial linking occurs when
imports depend on unresolved requirements, such as the im-
port of Path in SubgraphPath, which depends on inSubgraph. We
say partial linking because the linker leaves these require-
ments unresolved. However, this is only useful if we can later
combine the result of partial linking with another module
to produce a closed module eventually. To this end, we rely
on compositional linking: The result of linking is a regular
module, which can be imported elsewhere. For example, we
can use the SubgraphPath bundle in another module:
module App

declare subgraph: Int

subgraph(1). subgraph(2).

import SubgraphPath as sp { inSubgraph = subgraph }

This module is closed since it does not contain any more
requirements. Moreover, we can statically validate that the
module is executable.

2.4 Compositional Validation
Each module has an implicit module interface that we infer
from the module’s de�nition. The module interface com-
prises the required and provided relations with their types.
Local de�nitions are not part of the interface. For example,
the modules from above have the following interfaces:

Graph : hY | edge : Int ⇥ Inti
Path : h⇢ : Int ⇥ Int | path : Int ⇥ Inti

SubgraphPath : hinSubgraph : Int | p.path : Int ⇥ Inti
In the module interface h', %i, we �rst list the required

relations ' and then the provided relations % . As we will see

Separate Compilation and Partial Linking: Modules for Datalog IR GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

(rules) A ::= ? (-) :� 0.
(atoms) 0 ::= ? (C) | C = C | C < C

(terms) C ::= - | E
(predicate) ? ::= = | =.?

= 2 Name - 2 Var) 2 Type E 2 Value

(module) " ::=module n ⇢

(entry) ⇢ ::= declare sig | rule r |
require sig | provide sig |
import n as n with {p = p}

(signatures) sig ::= ? :) ⇥ · · · ⇥)

Figure 5. Core Datalog IR with modules.

in the following section, the interface of a module is su�cient
for checking the validity of an import. In particular, it is not
necessary to expose the full de�nition of a module.3

3 Formalization of the Module System
The goal of this paper is to provide a module system for
a Datalog IR. The module system needs to be expressive
enough that existing Datalog dialects can use it as a com-
pilation target. In this section, we formalize the syntax of
modules, de�ne inference rules for compositional module
validation, and provide the linking routine.

3.1 Syntax of the Module System
We have shown examples of Datalog modules in Section 2,
but have not formally introduced the syntax. We remedy this
omission now. The top half of Figure 5 shows the grammar
of a standard Datalog. Datalog rules ? (-) :� 0. are infer-
ence rules with a head ? (-) and a rule body 0. A rule body
consists of a sequence of atoms 0, each of which is either
a predicate call ? (C), an equality constraint C = C , or an in-
equality constraint C != C . A term C is either logic variable
- or a constant value E . The only di�erence from standard
Datalog is that we explicitly allow quali�ed predicate names
? to support quali�ed imports later.

The remainder of Figure 5 introduces the syntax of Data-
log modules. Each module carries a name = and a sequence
of entries 4 . There are 5 di�erent kinds of entries. First, a
module can declare the signature of a locally de�ned re-
lations using declare sig. We require explicit declarations
with their type to support static validation of modules. Note
that many current Datalog systems (e.g., IncA and Sou�é)
require similar signatures, too. Second, a module can de-
�ne standard Datalog rules using rule r . Third, an entry
require sig requests a relation with the given signature to
be provided during linking. Fourth, provide sig exports the
3This enables higher-order modules that abstract over modules similar to
SML functors, but we have not explored this option yet.

relation with its signature given that it is locally de�ned.
Finally, language-integrated linking is triggered by an en-
try import m as n with {p = p}, which imports a module
named< as = while resolving requirements of< following
the assignments ? = ? . The examples in the previous section
followed and exempli�ed this syntax for Datalog modules.

3.2 A Type System for Modules
A valid module must satisfy three key properties:

1. The Datalog rules in the module must be well-typed.
2. Provided relations must be locally available.
3. Required relations must be bound during linking.

We designed a type system to validate modules with respect
to these properties. However, we leave the type checking of
standard Datalog rules unde�ned, since this is orthogonal
to the module system. Moreover, we assume that no acci-
dental variable shadowing occurs, such as re-declarations
of relations with con�icting signatures, which can be easily
checked and �xed through renaming.

To validate a module, we operate in two phases. First, we
collect key information about the module: the required rela-
tions �in, the provided relations �out , and the locally de�ned
relations �loc . The required and provided relations consti-
tute a module’s public interface h�in, �outi. The local def-
initions �loc are only necessary locally during validation.
We formalize the �rst phase of module validation in Fig-
ure 6. We visit each entry of a module using judgment
�in, �out, �loc ` 4 a �in, �out, �loc , which adds signatures to
the appropriate context. The only interesting case is the rule
for imports: We add all provided relations �out< of the im-
ported module< to the local de�nitions �loc , but only after
qualifying their name. Here, < : h�in, �outi |�loc yields the
public interface and local de�nitions of module<, as de�ned
by the last inference rule in Figure 6.
After we have gathered all relevant information about

the relations of a module, we can enter the second phase
of module validation and check the module de�nition. We
de�ne module validity through inference rules in Figure 7.
Rule V-Module �rst computes the public interface and local
de�nitions of a given module. It then checks two proper-
ties. First, the relations �out provided by the module must be
subsumed by the locally available de�nitions �loc and their
signatures must match. Second, all module entries must be
valid, assuming both locally de�ned relations �loc and exter-
nally required relations �in can be used. The remainder of
the rules in Figure 7 validate module entries (� ` 4 ÿ). For
declare sig, require sig, and provide sig, no extra check is
necessary: we used these entries in the �rst phase of module
validation. For rule r , we rely on a standard typing rela-
tion for Datalog rules, but provide the appropriate context
consisting of required and local relations. Recall that local
relations include imported ones, which thus may also be
used in rules.

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA David Klopp, André Pacak, and Sebastian Erdweg

C-Decl
�in, �out, �loc ` declare p : T a �in, �out, (�loc ;? :))

C-Rule
�in, �out, �loc ` rule r a �in, �out, �loc

C-Req
�in, �out, �loc ` require p : T a (�in;? :)), �out, �loc

C-Prov
�in, �out, �loc ` provide p : T a �in, (�out ;? :)), �loc

< : h_, �out< i |_ �loc< = {=.? :) | ? :) 2 �out< }
C-Import

�in, �out, �loc ` import m as n with {p = p} a �in, �out, �loc [�loc<

(�in1 , �out1 , �loc1) = (;, ;, ;) 88 . �in8 , �out8 , �loc8 ` 48 a �in8+1, �out8+1 , �
loc
8+1 C-Module

module n e1 · · · en : h�in=+1, �out=+1i |�loc=+1

Figure 6. Collect the required relations �in, provided relations �out , and locally de�ned relations �loc of a module.

module n e1 · · · en : h�in, �outi |�loc �out ✓ �loc 88 . �loc [�in ` 48 ÿ V-Module
module n e1 · · · en ÿ

V-Decl
� ` declare sig ÿ

� `rule ? (G):� 0. ÿ V-Rule
� ` rule p(x):� a. ÿ

V-Req
� ` require sig ÿ

V-Prov
� ` provide sig ÿ

< : h�in, _i |_ 88 . �in (?8) = �(@8) keys(�in) \ {?1, . . . , ?: } = ; V-Import
� ` import m as n with {p1 = q1, . . . , pk = qk} ÿ

Figure 7. Validate the provided relations and entries of a module, in particular ensuring imports satisfy all requirements.

Finally, we validate import entries in V-Import. This is
where linking takes place, and thus we need to validate
that the imported module is correctly instantiated. We �rst
obtain the required relations �in of the imported module<.
Then, for each binding ?8 = @8 in the import declaration, we
validate that the type �in (?8) required by<matches the local
type �(@8) of the assigned relation. Moreover, the import
declaration must provide bindings for all required relations
in �in. If these conditions are met, linking will succeed.

One important point to notice about module validation is
that it is compositional: While checking a module, we only
ever use the interface of other modules but not the de�nition.
We can see this in rules C-Import and V-Import, which use
the provided and required relations of the imported mod-
ule only. Therefore, module validation supports separate
compilation as desired.

3.3 Linking Modules
Our linking algorithm operates on a group of modules that
are linked to form bundles or an executable program. Each
group of modules is identi�ed by one primary module and a
set of library modules. The primary module contains import
statements, while library modules in the same group are
free of imports. The library modules in a group are given

by the import statements in the primary module. During
linking, we resolve and eliminate the imports in the primary
module, producing a single import-free module with the
same name as the primary module. Consider the following
example, where we aim to compile and link �ve modules:

module M1

import M2 as m2

import M3 as m3

module M3

import M2 as m2

module M2

import M4 as m4

import M5 as m5

module M4

module M5

First, we order all modules topologically based on their im-
ports. Following this order, we �rst separately compile M5 and
M4, followed by M2, M3 and �nally M1. Each time we encounter
a module with an import statement during compilation, we
trigger linking. For example, no linking happens during the
compilation of M4 and M5, since they are import-free. Compi-
lation of M2, M3 and M1 triggers linking. When compiling and
linking M2, we use M2 as a primary module and M5 and M4 as
library modules in the group. After linking, M2 is free of im-
ports and we link the primary module M3 with the linked M2

module as library module. The topological order ensures that
all library modules are consistently free of imports. Note that
the existence of a topological order precludes cyclic imports,
which we guarantee before linking. Since this is a severe

Separate Compilation and Partial Linking: Modules for Datalog IR GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

Algorithm 1 Algorithm to link a group of modules
1: Input:
2: module N imp, req, prov, decl, rule primary module
3: Mods set of import-free library modules
4: procedure L���(% , Mods)
5: Entries A4@ [?A>E [342; [AD;4
6: for import m as n with {f} 2 8<? do
7: module m _, _, _, declm, rulem get(<,Mods)
8: Entries Entries [{pre�x(=,⇡) | ⇡ 2 342;<}
9: Entries Entries [
10: {pre�x(=, subst(f,')) | ' 2 AD;4<}
11: return module N Entries

limitation, given that various Datalog dialects support cyclic
imports, we will show how to resolve it in the next section.

We de�ne our linking algorithm in 1. It expects two inputs:
a group’s primary module % and a set of import-free library
modulesMods contained in the current group. When we link
a module, we preserve all entries in the primary module
except for the imports (line 5) by initializing Entries with all
entries of % , but excluding imp. Hence, we do not alter the
public interface of the primary module during linking. This
entails that open modules stay open and closed modules stay
closed. Now,we resolve all imports by inlining corresponding
entries. We proceed in three steps for each imported module:

(i) We collect and pre�x all local declarations in the im-
ported module with the local module quali�er =.

(ii) We use subst to replace predicate names referencing
required signatures with the right-hand side of the
import’s binding.

(iii) Finally, we pre�x the predicate names in each rule of
step (ii) with the local module quali�er =. Hence, the
rules now match their declared signature again.

To produce the linked module, we create a new module with
the name of the primary module and incorporate all entries
accumulated during the linking process.
To show that our linking is indeed correct, we proof two

key properties: (i) a linked module is free of imports, and (ii)
linking does not break module validity.

De�nition 3.1. Let % be a module, and Mods be a set of
import-free modules, that is 8< 2 Mods. imports(<) = ;.
We call the tuple (% , Mods) a group of modules with pri-
mary module % and library modulesMods, if all imports in %
are resolvable by Mods, that is modNames(imports(%)) ✓
names(Mods).

Theorem 3.2. Let (%,Mods) be a group of modules, then
L���(%,">3B) = % 0 with imports(% 0) = ;.

Proof. The proof follows directly from line 5, where we in-
clude all entries except imports from % in % 0, and lines 8-9
where we only add entries from import-free modules. É

To show that linking does not break module validity, we
�rst formulate and proof two lemmas.

Lemma 3.3. Let (%,Mods) be a group of modules, and
L���(%,">3B) = % 0, then the interface of % is equal to the
interface of % ’, that is: �8=% = �8=% 0 ^ �>DC% = �>DC% 0 .

Proof. We copy all entries, including the interface of % (line
5), and ignore the interface of other modules (lines 8-9). É

Lemma 3.4. Let (%,Mods) be a group of valid modules, and
L���(%,">3B) = % 0, then the local context of % 0 extends the
local context of % , that is �;>2% ✓ �;>2% 0 .

Proof. Let ? :) 2 �;>2% , then line 5 guarantees that ? :) 2
�;>2% 0 . If =.? :) 2 �;>2% , that is =.? is imported, then 9< 2
Mods. ? :) 2 �>DC< ✓ �;>2< . Line 8 copies all local signature
342;< from �;>2< pre�xed with the same = to % 0. É

Finally, we can now formulate the theorem that linking
does not break module validity.

Theorem 3.5. Let (%,Mods) be a group of modules, such
that % ÿ, and all modules in Mods are valid, that is 8< 2
">3B .< ÿ, then L���(P,Mods) = % 0 is valid, that is % 0 ÿ.

Proof. To show that % 0 is valid, V-Module must hold. Given
lemma 3.3 and 3.4 it follows: �>DC% 0 = �>DC% ✓ �;>2% ✓ �;>2% 0 . That
is, to prove V-Module holds, it is enough to show that all
entries of % 0 are valid. In particular, Theorem 3.2 guarantees
that % 0 is import-free, meaning V-Import is never required.
Additionally, the rules V-Decl, V-Req, and V-Prov all hold
unconditionally, thus we only need to show that V-Rule holds
for all rules of % 0. Consider rule A 2 rules(% 0). Either A was
originally de�ned in % , in which case A is still valid, since we
check it unmodi�ed under the extended context �8=% 0 [�;>2% 0 ◆
�8=% [�;>2% , or A originates from a module< 2 Mods. In this
case, we need to show that A is still valid if we copy all local
entries, substitute requirements and pre�x them (lines 8-
9). Since we copy all rules AD;4< with their corresponding
signatures 342;< with the same pre�x =, they stay valid, as
long as they don’t reference requirements. If a rule references
a requirement of<, typing is still valid because we replace
calls of required relations in< with calls to local or required
relations in % using subst and the bindings f . Since % is valid,
we know that for all requirements in< a valid binding and
as such a valid signature exists in % . Given lemma 3.3 and
3.4, we also know that all required and all local signatures
in % must also exists in % 0, after pre�xing.

É

This concludes our formalization of the module system,
including the module checker and linking process.

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA David Klopp, André Pacak, and Sebastian Erdweg

module A

require Q: Int

declare R: Int

provide R: Int

R(x) :- Q(x).

module B

require R: Int

declare Q: Int

provide Q: Int

Q(x) :- R(x).

module C

import A as a { Q = b.Q }

import B as b { R = a.R }

Figure 8. Modules A and B are mutually dependent through
C, but do not have a cyclic dependency on each other.

4 Translation of Usage Patterns
Several Datalog dialects are already equipped with compo-
nent systems that support a variety of usage patterns not
directly supported by our module system. In this section,
we demonstrate how to utilize requirements and language-
integrated linking to express these patterns.

4.1 Cyclic Imports
Many module systems support cyclic dependencies be-

tween modules, which are not allowed in the module system
presented in this paper. We disallow cyclic imports because
our linking algorithm requires a topological order based on
the import dependencies between modules. For example, the
following code with a cyclic dependency between A and B is
prohibited in our module system:

module A

import B as b

declare R: Int

provide R: Int

R(x) :- b.Q(x).

module B

import A as a

declare Q: Int

provide Q: Int

Q(x) :- a.R(x).

However, not all hope is lost, as we can express cyclic
import dependencies using an intermediate module that in-
troduces a mutual dependency between modules instead.
In particular, we use our requirement feature to implement
this dependency without cycles. Figure 8 shows how we can
express our running example with a mutual dependency.
Instead of having A and B directly depend on each other, we
introduce an intermediate module C that imports both. Thus,
we eliminate the direct dependency cycle. Since A and B still
need access to Q and R respectively, we introduce require-
ments for those relations that we resolve in module C.
At �rst glance, it may seem that we have merely shifted

the problem. We still reference b.Q in the import of A and a.R

in the import of B. However, it is important to note that these
bindings are simply equalities between relations, which are
resolved by inlining during linking.

4.2 Inheritance
Inheritance is a common feature in various Datalog di-

alects. For instance, QL o�ers an object-oriented dialect for

.comp BaseConfig {

.decl R(x:number)

R(41).

}

.comp ConfigOne: BaseConfig { R(42). }

.comp ConfigTwo: BaseConfig { R(43). }

.init c1 = ConfigurationOne

.init c2 = ConfigurationTwo

(a) Sou�é program

module BaseConfig

declare R: Int

provide R: Int

R(41).

module ConfigOne

require super$R: Int

declare R: Int

provide R: Int

R(x) :- super$R(x).

R(42).

module ConfigTwo

require super$R

declare R: Int

provide R: Int

R(x) :- super$R(x).

R(43).

module Main

import BaseConfig as BC

import ConfigOne as c1

with { super$R = BC.R }

import ConfigTwo as c2

with { super$R = BC.R }

(b) Module system

Figure 9.Multiple Sou�é components inherit relations from
a base component.

Datalog supporting classes and inheritance [6]. Similarly,
Sou�é includes a sophisticated component system that sup-
ports extending components. Figure 9 shows such an exam-
ple with three components in Sou�é. We de�ne one super
component, BaseConfig that declares a single relation R with
fact R(41). Subsequently, we de�ne and instantiate two child
components, namely ConfigOne and ConfigTwo which extend
BaseConfig. Each child component inherits relation R and ex-
tends it with one additional fact. Executing the program, we
expect the following output: c1.R: {41, 42} and c2.R: {41, 43}.
Using required relations, we can express the same inher-

itance structure within our module system. We create sep-
arate modules for each Sou�é component and one main
module to represent the entire program. Both modules rep-
resenting ConfigOne and ConfigTwo require the relation R that
they inherit from the parent. We mark these requirements
with a super pre�x to indicate inheritance. Additionally, both
modules also rede�ne relation R with two bodies. The �rst
body calls the inherited relation, while the second body de-
�nes the additional fact for R.
For each component instantiation in the original Sou�é

program, we import the corresponding module in the Main

module. We use the name given on instantiation as the local
module name during import. For example, we import module
ConfigOne with the local name c1. Note that to resolve the

Separate Compilation and Partial Linking: Modules for Datalog IR GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

.decl Q(x:number)

Q(41).

.comp Config {

.decl R(x:number)

R(x) :- Q(x).

R(42).

.comp NestedConfig {

.decl S(x:number)

S(x) :- R(x).

S(x) :- Q(x).

}

.init n = NestedConfig

}

.init c = Config

(a) Sou�é program

module Main

import Config as c

with { outer$Q = Q }

declare Q: Int

Q(41).

module NestedConfig

require outer$R: Int

require outer$Q: Int

declare S: Int

provide S: Int

S(x) :- outer$R(x).

S(x) :- outer$Q(x).

module Config

import NestedConfig as n with {

outer$Q = outer$Q, outer$R = R

}

require outer$Q: Int

declare R: Int

provide R: Int

R(x) :- outer$Q(x).

R(42).

(b) Module system

Figure 10. Relations from the outer scope of a Sou�é pro-
gram are passed down into nested component.

requirements for the inherited relations, we also need to
import the BaseConfig module with an arbitrary local name.
This approach is also �exible enough to support nested

inheritance hierarchies. In such cases, we pass the require-
ments along the inheritance hierarchy from one module to
the next. Using the same design, we can also mimic Souf-
�é’s multiple inheritance, where a single component inherits
from more than one parent component. Instead of requiring
relations from just one parent component, we additionally
require relations from a second parent.

4.3 Scoping
Scoping plays a crucial role in organizing code in Datalog

dialects. For instance, Sou�é implicitly exposes all relations
declared in a program to all its components. Each nested
component can also access all content from the outer com-
ponent. In Figure 10, the relation Q, de�ned in the outermost

scope of a Sou�é program, is available in the components
Config and NestedConfig. Consequently, Q can be referenced
in the component’s internal rule R or S respectively.
We encode this scoping behaviour with requirements.

Modules, corresponding to a component, require all relations
from the outer scope, that we resolve on import. For exam-
ple, the Main module imports module Config and ful�lls the
requirement for outer$Q with its local de�nition. NestedConfig
requires everything from the outermost main scope, but also
all relations from the Config scope. That is, each nesting level
propagates all requirements from the parent scope and adds
new requirements for relations in the current scope. Speci�-
cally, the Config module propagates relation Q from the main
scope and also propagates its new de�nition R to NestedConfig.

We have seen how we can express even complex Datalog
dialect features in our module system. In the next section,
we extend the IncA compiler framework with our module
system and use it to link a large case study in Doop.

5 Implementation and Case Study
IncA is a multi-level IR compiler framework, which mirrors
the architecture of LLVM [14], but adapts it for Datalog.
Datalog dialects can implement compiler frontends to con-
vert their code into an extensible Datalog IR. Independently
of the frontend, this IR code is transformed, analyzed and
optimized in multiple interleaved passes. Finally, compiler
backends translate the IR code for various Datalog engines
and execute it. The rest of this section demonstrates how we
implemented and use our module system in IncA.

5.1 Extend the IncA Datalog IR
At its core, IncA consists of a typed core Datalog IR, that
is extensible with any number of IR extensions. We extend
IncA’s core Datalog IR with the syntax described in Figure 5.
That is, a Datalog program consists of a set of modules, each
containing a set of module entries. Thus, Datalog frontends
produce one ormoremodules that are linked to an executable
program or bundles. Note that compiler backends reject open
modules because they are not executable.
We extend the type system of IncA’s core IR to support

our module system by following the rules in Figure 6 and
Figure 7. However, our implementation includes one addi-
tional check to guarantee that local names of modules are
unique to prevent name clashes. For readability purposes,
we left this detail out of the presentation in Figure 7.

Finally, we add our linking algorithm from Section 3.3
to IncA’s compilation pipeline. Technically, we leverage an
existing mechanism within IncA’s compilation pipeline to
accomplish this, namely lowerings. Lowerings allow IR ex-
tensions to be expressed in terms of other IR extensions by
desugaring them. We implement our linking algorithm as a
lowering which desugars imports by inlining relations.

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA David Klopp, André Pacak, and Sebastian Erdweg

However, it turns out that some compilation steps are in
con�ict with partial linking. In particular, some optimizations
are only fully applicable when the �nal Datalog program is
known. To enable specialized handling of these cases, we
extend IncA to di�erentiate closed-world and open-world
compilation. Closed-world compilation assumes complete
knowledge of the entire Datalog program, whereas open-
world compilation only operates on a partial Datalog pro-
gram. For example, consider an optimization that removes
all relations from a Datalog module that are never queried.
During an open-world compilation, we cannot yet determine
if provided relations are queried. This decision can only be
made once a program is fully linked. Nevertheless, we still
provide an optimization for open-world compilation to re-
move only non-provided relations that are never queried.

In the remainder of this section, we demonstrate its appli-
cability to a large Doop analysis written in Sou�é.

5.2 Case Study: Points-To Analysis in Doop
Doop is a highly con�gurable points-to framework for

JVM bytecode written in Sou�é’s Datalog dialect. We are
able to automatically translate an existing large context-
insensitive points-to analysis to modules in IncA’s IR. To this
end, we modify IncA’s Sou�é frontend to produce modules,
following the strategies described in Section 4.

Figure 11 illustrates the analysis structure and generated
IR modules. The original Sou�é program spans ⇠7000 LOC
across 5 components, exploiting scoping and inheritance.
ContextInsensitiveConfiguration inherits all relations de�ned
in AbstractConfiguration. Besides inheritance, the program
also uses nested scoping. That is, each component can access
all declarations from the main program scope. At the same
time, relations in the main scope can also access the basic

and config instances through the mainAnalysis instance.
We translate this program into 6 modules, one for each

component and one main module representing the primary
program. Each module requires all relations from the main
module. ContextInsensitiveConfiguration also requires all in-
herited relations from AbstractConfiguration. Additionally,
BasicContextSensitivity re-provides relations imported from
Basic and ContextInsensitiveConfiguration to the main scope.

We link the program in the topological order of the mod-
ules. First, we separately lower, optimize, and type check the
open modules Basic, AbstractConfiguration, and
ContextInsensitiveConfiguration. Then, we proceed with
BasicContextSensitivity, which remains an open module as
it still requires relations from the outer scope. Finally, we
generate the executable program by linking the main module
and resolving all remaining dependencies.

5.3 Case Study: Interoperability
As indicated in Figure 1, our module system enables inter-
operability between Datalog dialects. To showcase this, we

.comp Basic { ... }

.comp AbstractConfiguration { ... }

.comp ContextInsensitiveConfiguration:

AbstractConfiguration { ... }

.comp BasicContextSensitivity {

.init basic = Basic

.init configuration = ContextInsensitiveConfiguration

...

}

.init mainAnalysis = BasicContextSensitivity ...

(a) Sou�é program

module Basic

... // require all relations from outer scope

module AbstractConfiguration

... // require all relations from Main scope

module ContextInsensitiveConfiguration

... // require Main & AbstractConfiguration relations

module BasicContextSensitivity

... // require all relations from Main scope

import Basic as basic with {/*Main Scope*/}

import AbstractConfiguration as A with {/*Main Scope*/}

import ContextInsensitiveConfiguration as config

with {/*Main Scope & Inherited from A*/}

// re-provide everything from basic and config

provide basic.X

provide config.X

...

module Main

import BasicContextSensitivity as mainAnalysis

with {/*all relations from this scope*/}

...

(b) Module system

Figure 11. Structure of the context-insensitive Doop analysis
written in Sou�é.

implement an escape analysis in Functional IncA by utilizing
an existing points-to analysis written in Sou�é.

Functional IncA is a functional language that does not use
Datalog relations in its frontend dialect, but still compiles
down to Datalog IR. In contrast, the Sou�é dialect closely
aligns with Datalog and operates directly on Datalog rela-
tions. To integrate these two languages, we adapt Functional
IncA to import Datalog relations by name and module. To
this end, we extend Functional IncA’s parser, type checker,
and compiler. We treat imported relations as a set of tuples
on which we operate with set comprehensions. Consider an
excerpt from our escape analyses in Functional IncA:
import PointsTo as pt:

AssignHeapAllocation(String, String, String), ...

def mayEscape(): Set[(String, Boolean)] =
{ (obj, mayOutlive(obj, method)) |

(obj, _, method) in pt.AssignHeapAllocation }

Separate Compilation and Partial Linking: Modules for Datalog IR GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

We import the AssignHeapAllocation relation from our Souf-
�é module into Functional IncA. This relation holds all heap
allocations in the program that we want to analyze. To map
Sou�é types to Functional IncA types, we require explicit
type annotations upon import. The function mayEscape deter-
mines if each heap allocation outlives the method in which
it is de�ned. To do so, we use the helper function mayOutlive.

To create an executable program, we follow the steps out-
lined earlier. First, we separately compile the Sou�é point-to
analysis to multiple IR modules and link them to a single
big IR bundle. Then, we compile the Functional IncA mod-
ule to an IR module and link it with the Sou�é IR bundle,
yielding the executable Datalog program. We can execute
the program with any Datalog engine supported by IncA.

6 Related Work
We design, formalize, and implement a typed module system
for Datalog intermediate representations. To the best of our
knowledge, we are the �rst to study such a module system.
However, prior research on module systems, especially in
logic programming languages and Datalog, does exist and
will be discussed in this section.

6.1 Module Systems in the Broader Literature
Cardelli [9] provides a theoretical framework for System F,
focusing on modularization and linking through program
fragments. These fragments are syntactically well-formed
program terms that support separate compilation (simpli�ed
to type checking) and partial linking. They de�ne linking as
a process generating an output program from a collection
of fragments and a description of how these are combined.
This description is speci�ed in a con�guration language, dif-
ferent from the module language, and formalized by linksets.
Linking either produces a complete program or an incom-
plete library for further linking. Our modules align with the
concept of fragments, as they are collections of relations that
are separately compiled and checked. However, our linking
process is integrated into the language via import statements,
eliminating the need for a separate con�guration language.
In our system, open modules are akin to libraries, while
closed modules correspond to complete programs.
While module systems are prevalent in nearly all widely

used programming languages, such as OCaml, Go, Java,
Python, or C++, a detailed comparison to all of them is not
practical. Instead, we focus on a comparison with one of
the most comprehensive module systems found in Standard
ML (SML). SML [17] is a general-purpose functional pro-
gramming language with an advanced module system that
separates linking and library creation from the core language.
There are three core concepts in SML’s module system: struc-
tures, signatures, and functors. A structure is a collection
of declarations with concrete implementations. Structures

are instantiated by binding them to a name and using qual-
i�ed names to access their contents. The second concept,
signatures, describes the structure’s interface, consisting of
names and types for all entities and substructures. A functor,
the third concept, maps between structures to parameterize
modules. Given an existing structure that adheres to a signa-
ture, a functor creates a new structure from it. Our Datalog
IR module system resembles SML structures, as our modules
are collections of relations that are instantiated with local
names through imports. A module’s public interface is sim-
ilar to the signature of a structure, as type checking an IR
module requires only the public interface. These interfaces
enable us to write parametric modules that abstract over
modules, similar to how SML functors abstract over modules.
However, contrary to SML, our linking process is integrated
into the Datalog IR language.

6.2 Module Systems in Logic Programming
Miller [16] de�nes a pure theory of module systems for logic
programming languages using nested implications. To this
end, they de�ne a logic language that extends the syntax
of horn clauses with implications in goals and in bodies of
clauses. They do not address linking or partial compilation
in their work. We implemented our module system as part
of the IncA compiler framework and demonstrated its us-
ability with two case studies. While their system structures
multiple predicates within a module, it lacks mechanisms
for information hiding. Our modules are also a collection of
relations, but we support information hiding by selectively
exporting relations. Similar to us, they support parameteri-
zation by using variables as predicates in module de�nitions.
However, their approach does not detail how these variables
are resolved. They support an import mechanism through
implication. That is, if a body of a relation is attempted as
a goal, it will come with the module as a hypothesis. In our
system, imports are resolved by linking, which inlines im-
ported relations using a local module name. Our modules are
parametric in relations through requirements that we resolve
with imports. We do not need external linking mechanisms.

Hill [10] also presents a theory of a module system for a
typed logic programming language called Gödel. A module is
a collection of predicates and consists of a public (export) and
a private (local) interface. Public predicates are accessible
outside the module, while private ones are restricted to the
module. Modules can be imported into one another, bringing
in all public symbols from the imported module. Our mod-
ules are a collection of relations as well. We explicitly provide
relations to other modules and import them by inlining. Us-
ing local names, we can import the same module multiple
times, enabling reusable, parametric modules. Gödel also
supports parametric modules, allowing parameterization by
types and relations, which are resolved upon import. How-
ever, Gödel does not support importing the same module

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA David Klopp, André Pacak, and Sebastian Erdweg

multiple times within the same namespace. Their work also
does not address compositional validity or partial linking.
Sannella and Wallen [22] present a theoretical module

system for Prolog. Although Prolog di�ers from Datalog in
semantics, its surface language of horn clauses with atoms
and terms is quite similar. Even though our module system
purely focuses on Datalog, there are still similarities. The
core abstraction of their approach is called structure. Struc-
tures contain declarations of functions and relations and can
export those to other structures. It is also possible to inherit
declarations from other structures or make a structure para-
metric in other structures. Since standard Datalog does not
support functions, our design does not capture them. How-
ever, our modules can export relations using provide and also
require other relations. As discussed in Section 4, this form
of parameterization can express various patterns, including
inheritance. Their structures and our modules both are ac-
cessed with quali�ed names. Additionally, structures include
signatures that specify their content. However, since their
theory is untyped, their signatures only include the arity
of relations. While we always explicitly require type anno-
tations for relations and requirements, structures can infer
their signatures. Since our module system is designed for
IRs and is not user-facing, type inference is not a necessity.

6.3 Datalog Dialects with Module Systems
QL [6] is an object-oriented frontend language that com-
piles to Datalog and is evaluated by a custom engine to per-
form static analysis on various programming languages. QL
supports di�erent module types, particularly parameterized
modules, which accept multiple predicate names as input
that must be resolved upon instantiation. That is, a module
can be reused by instantiating it multiple times with di�erent
predicates. Similarly, our module system allows parametriza-
tion over relations by de�ning requirements. Our modules
can be imported multiple times with di�erent requirements.
Even though QL directly translates to Datalog, it is unclear
how and if modules translate to Datalog as well.
LogicQL [5] is another mostly pure Datalog dialect with

its own evaluation engine. Modules consist of relations and
type de�nitions with support for information hiding. In par-
ticular, a module can export declarations for other modules
to use. LogicQL supports neither the parametrization of mod-
ules nor of relations. Similarly, our modules are collections
of relations that support information hiding by providing
certain relations to other modules. Additionally, we enhance
modules by making them parametric through requirements.
DDLog [19] is an incremental execution engine and di-

alect of Datalog. It supports a module system inspired by
Haskell and Python, that allows importing types, functions,
or relations. Our formalization of the module system only
focuses on relations, since our targeted Datalog IR has no no-
tion of functions or algebraic data. DDLog allows importing

modules to the same namespace or keeping the namespace
separate. We always use distinct namespaces for modules.

Sou�é [11] is a high-performance C++ engine with a data-
log frontend language that supports modularization through
components. Components can contain relations, type decla-
rations and de�nitions, or other nested components. They
can be instantiated multiple times by assigning a unique
name to them. Access to a component’s content requires a
fully quali�ed name. Similarly, our modules encapsulate rela-
tions, can be imported multiple times with local names, and
require fully quali�ed names for access. While Sou�é’s com-
ponents support inheritance and scoping, ourmodules do not
have built-in support for these features. However, as shown
in Section 4, our design is �exible enough to accommodate
these patterns. Sou�é also allows components with para-
metric type arguments. We consider type parametrization
orthogonal to our modules. Instead, we suggest that in a com-
piler framework, extensions could provide type-parametric
relations, rather than type parametric modules. Extending
our module system to support parametric relations should be
straightforward based on our current formalization. Before
execution, Sou�é �attens and inlines components to produce
standard Datalog code. Our linking algorithm also inlines
relations to produce a single executable Datalog program.

7 Conclusion
We propose the �rst module system for Datalog IRs to sup-
port interoperability between Datalog dialects. Modules are
uniquely named collections of relations that can be sepa-
rately type checked, compiled, and partially linked to form
bundles. They can both, provide relations to other modules
and require relations from other modules. Requirements
must be resolved when linking the surrounding module,
which we trigger with a language-integrated import state-
ment. This approach enables parametric modules, which
naturally extend the expressiveness of standard Datalog. We
formalize the static semantics and linking algorithm of our
module system and demonstrate how we support cyclic im-
ports, inheritance, and scoping. We then integrate our mod-
ule system into the existing Datalog framework IncA, and
implement a Sou�é frontend to compile complex Sou�é pro-
gramswith inheritance and scoping into multiple IRmodules.
Finally, we use our implementation to compile and link an
existing large context-insensitive points-to analysis written
in Doop into an executable Datalog program. To show inter-
operability, we implement an escape analysis in Functional
IncA using a Sou�é points-to analysis.

Acknowledgments
This work has been funded by the German Research Foun-
dation (DFG) (Project numbers 451545561 & 508316729) and
the European Research Council (ERC) under the European
Union’s Horizon 2023 (Grant Agreement ID 101125325).

Separate Compilation and Partial Linking: Modules for Datalog IR GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

References
[1] Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo. 2005.

Diagnosis of asynchronous discrete event systems: datalog to the
rescue!. In Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 13-15,
2005, Baltimore, Maryland, USA, Chen Li (Ed.). ACM, 358–367. h�ps:
//doi.org/10.1145/1065167.1065214

[2] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, JosephM.
Hellerstein, and Russell Sears. 2010. Boom analytics: exploring data-
centric, declarative programming for the cloud. In European Con-
ference on Computer Systems, Proceedings of the 5th European con-
ference on Computer systems, EuroSys 2010, Paris, France, April 13-
16, 2010, Christine Morin and Gilles Muller (Eds.). ACM, 223–236.
h�ps://doi.org/10.1145/1755913.1755937

[3] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Mar-
czak. 2011. Consistency Analysis in Bloom: a CALM and Collected
Approach. In CIDR 2011, Fifth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Pro-
ceedings. www.cidrdb.org, 249–260. h�p://cidrdb.org/cidr2011/Papers/
CIDR11_Paper35.pdf

[4] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Heller-
stein, David Maier, and Russell Sears. 2011. Dedalus: Datalog in Time
and Space. In Datalog Reloaded, Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Sellers (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 262–281.

[5] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan
Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geo�rey Washburn.
2015. Design and Implementation of the LogicBlox System. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 1371–1382.
h�ps://doi.org/10.1145/2723372.2742796

[6] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max
Schäfer. 2016. QL: Object-oriented Queries on Relational Data. In 30th
European Conference on Object-Oriented Programming (ECOOP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2:1–2:25. h�ps:
//doi.org/10.4230/LIPIcs.ECOOP.2016.2

[7] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. For-
mulog: Datalog for SMT-based static analysis. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 141:1–141:31. h�ps://doi.org/10.1145/3428209

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative
speci�cation of sophisticated points-to analyses. In Proceedings of the
24th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2009, October
25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens
(Eds.). ACM, 243–262. h�ps://doi.org/10.1145/1640089.1640108

[9] Luca Cardelli. 1997. Program Fragments, Linking, and Modularization.
In Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented
at the Symposium, Paris, France, 15-17 January 1997, Peter Lee, Fritz
Henglein, and Neil D. Jones (Eds.). ACM Press, 266–277. h�ps://doi.
org/10.1145/263699.263735

[10] P. M. Hill. 1993. A parameterised module system for constructing
typed logic programs. In Proceedings of the 13th International Joint

Conference on Arti�cal Intelligence - Volume 2 (Chambery, France)
(IJCAI’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
874–880.

[11] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Sou�é:
On Synthesis of Program Analyzers. In Computer Aided Veri�cation,
Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International
Publishing, Cham, 422–430.

[12] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A
variability-aware module system. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tuc-
son, AZ, USA, October 21-25, 2012, Gary T. Leavens and Matthew B.
Dwyer (Eds.). ACM, 773–792. h�ps://doi.org/10.1145/2384616.2384673

[13] David Klopp, Sebastian Erdweg, and André Pacak. 2024. A TypedMulti-
Level Datalog IR and its Compiler Framework. Proc. ACM Program.
Lang. 8, OOPSLA2, Article 327 (oct 2024), 29 pages. h�ps://doi.org/10.
1145/3689767

[14] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In 2nd IEEE
/ ACM International Symposium on Code Generation and Optimiza-
tion (CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE Computer
Society, 75–88. h�ps://doi.org/10.1109/CGO.2004.1281665

[15] Shane McIntosh. 2011. Build system maintenance. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, Richard N. Taylor,
Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, 1167–1169. h�ps:
//doi.org/10.1145/1985793.1986031

[16] Dale Miller. 1986. A Theory of Modules for Logic Programming.
[17] Robin Milner, Mads Tofte, and Robert Harper. 1990. The de�nition of

Standard ML. MIT Press, Cambridge, MA, USA.
[18] André Pacak and Sebastian Erdweg. 2022. Functional Programming

with Datalog. In European Conference on Object-Oriented Programming
(ECOOP) (LIPIcs, Vol. 222). Schloss Dagstuhl, 7:1–7:28.

[19] Leonid Ryzhyk and Mihai Budiu. 2019. Di�erential Datalog. In Datalog.
h�ps://api.semanticscholar.org/CorpusID:169040311

[20] Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher
Micinski. 2023. Bring Your Own Data Structures to Datalog. Proc.
ACM Program. Lang. 7, OOPSLA2, Article 264 (oct 2023), 26 pages.
h�ps://doi.org/10.1145/3622840

[21] Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski. 2022.
Seamless deductive inference viamacros. In Proceedings of the 31st ACM
SIGPLAN International Conference on Compiler Construction (Seoul,
South Korea) (CC 2022). Association for Computing Machinery, New
York, NY, USA, 77–88. h�ps://doi.org/10.1145/3497776.3517779

[22] D.T. Sannella and L.A. Wallen. 1992. A calculus for the construction
of modular prolog programs. The Journal of Logic Programming 12, 1
(1992), 147–177. h�ps://doi.org/10.1016/0743-1066(92)90042-2

[23] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremen-
tal Whole-Program Analysis in Datalog with Lattices. In Programming
Language Design and Implementation (PLDI). ACM.

[24] JohnWhaley, Dzintars Avots, Michael Carbin, andMonica S. Lam. 2005.
Using datalog with binary decision diagrams for program analysis. In
Proceedings of the Third Asian Conference on Programming Languages
and Systems (Tsukuba, Japan) (APLAS’05). Springer-Verlag, Berlin,
Heidelberg, 97–118. h�ps://doi.org/10.1007/11575467_8

Received 2024-06-18; accepted 2024-08-15

https://doi.org/10.1145/1065167.1065214
https://doi.org/10.1145/1065167.1065214
https://doi.org/10.1145/1755913.1755937
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/263699.263735
https://doi.org/10.1145/263699.263735
https://doi.org/10.1145/2384616.2384673
https://doi.org/10.1145/3689767
https://doi.org/10.1145/3689767
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1985793.1986031
https://doi.org/10.1145/1985793.1986031
https://api.semanticscholar.org/CorpusID:169040311
https://doi.org/10.1145/3622840
https://doi.org/10.1145/3497776.3517779
https://doi.org/10.1016/0743-1066(92)90042-2
https://doi.org/10.1007/11575467_8

	Abstract
	1 Introduction
	2 Modular Logic Programming in Datalog
	2.1 Open Datalog Modules and Separate Compilation
	2.2 Language-Integrated Linking
	2.3 Partial and Compositional Linking
	2.4 Compositional Validation

	3 Formalization of the Module System
	3.1 Syntax of the Module System
	3.2 A Type System for Modules
	3.3 Linking Modules

	4 Translation of Usage Patterns
	4.1 Cyclic Imports
	4.2 Inheritance
	4.3 Scoping

	5 Implementation and Case Study
	5.1 Extend the IncA Datalog IR
	5.2 Case Study: Points-To Analysis in Doop
	5.3 Case Study: Interoperability

	6 Related Work
	6.1 Module Systems in the Broader Literature
	6.2 Module Systems in Logic Programming
	6.3 Datalog Dialects with Module Systems

	7 Conclusion
	Acknowledgments
	References

