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The resurgence of Datalog in the last two decades has led to a multitude of new Datalog systems. These
systems explore novel ideas for improving Datalog’s programmability and performance, making important
contributions to the �eld. Unfortunately, the individual systems progress at a much slower pace than the
overall �eld, because improvements in one system are rarely ported to other systems. The reason for this rift
is that each system provides its own Datalog dialect with speci�c notation, language features, and invariants,
enabling speci�c optimization and execution strategies.

This paper presents the �rst compiler framework for Datalog that can be used to support any Datalog
frontend language and to target any Datalog backend. The centerpiece of our framework is a novel typed
multi-level Datalog IR that supports IR extensions and guarantees executability. Existing Datalog systems can
provide a compiler frontend that translates their Datalog dialect to the extended IR. The IR is then progressively
lowered toward core Datalog, allowing optimizations at each level. At last, compiler backends can target
di�erent Datalog solvers. We have implemented the compiler framework and integrated 4 Datalog frontends
and 3 Datalog backends, using 16 IR extensions. We also formalize the IR’s �exible type system, which is
bidirectional, �ow-sensitive, bipolar, and uses three-valued typing contexts. The type system simultaneously
validates type compatibility and precisely tracks bindings of logic variables while permitting IR extensions.
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1 Introduction
Datalog was invented in 1977, �ve years after C and Prolog, three years after SQL, and two years
after Scheme [Gallaire and Minker 1978]. However, only in the last decade or so, Datalog has been
recognized as a programming language rather than an expressive query language for databases.
While early Datalog programs implemented relatively simple recursive database queries, Datalog
programs nowadays span many thousand lines of code and, for example, are used to implement
state-of-the-art program analyses [Bravenboer and Smaragdakis 2009; Hajiyev et al. 2006]. This
revival of Datalog as a programming language has led to a wide array of novel Datalog systems
that improve Datalog’s programmability and its performance.
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The expressiveness and programmability of textbook Datalog is limited, since Datalog amounts
to relational algebra with recursion. Language extensions such as negation, arithmetics, and ag-
gregation have long been standard in Datalog systems, but recent research explores many new
ideas. For example, Sou�é [Scholz et al. 2016] extends Datalog with algebraic data types and
records, Formulog [Bembenek et al. 2020] extends Datalog with functions and SMT constraints,
IncA [Pacak et al. 2022; Szabó et al. 2016] extends Datalog with pattern functions and structural EDB
relations, Dedalus [Alvaro et al. 2010] extends Datalog with stateful relations, and egglog [Zhang
et al. 2023] extends Datalog with equality saturation. Other systems forego Datalog and provide
separate languages that execute like Datalog, such as the object-oriented QL [Avgustinov et al.
2016] and the functional Datafun [Arntzenius and Krishnaswami 2016]. At the same time, recent
research on Datalog execution has made signi�cant progress. For example, there is automatic
index selection [Subotic et al. 2018] and feedback-directed join optimization [Arch et al. 2022] in
Sou�é, di�erential data �ow [McSherry et al. 2013] in DDLog [Ryzhyk and Budiu 2019], incre-
mental recursive aggregation in IncA [Szabó et al. 2018, 2021], macro-based lowering to Rust in
Ascent [Sahebolamri et al. 2022], and many domain-speci�c optimizations in the literature.

While these advances are promising, progress on Datalog is inhibited by the lack of a common
language infrastructure. Speci�cally, each of the systems mentioned above comes with its own Dat-
alog dialect with speci�c notation, language features, and invariants, enabling speci�c optimization
and execution strategies. For example, a Sou�é program cannot be run with Formulog, a Formulog
program cannot be run with IncA, an IncA program cannot be run with Dedalus, and so on. This
has many downsides, which we summarize below:

(1) There is no portability between systems because language extensions in one Datalog dialect
cannot be used in other Datalog systems.

(2) Optimizations implemented in one Datalog system cannot be exploited in another Datalog
system. The e�ect of optimizations can also not be easily compared between systems.

(3) Datalog modules written for di�erent systems cannot be linked and thus cannot interoperate.

In this paper, we present the �rst compiler framework for Datalog, outlined in Figure 1. Our
framework adopts the architecture of LLVM’s MLIR [Lattner et al. 2021] to Datalog: Datalog dialects
can provide compiler frontends that translate their code into an intermediate representation (IR).
Analysis and optimization passes can then operate on the IR independent of the input Datalog
dialect. And �nally, compiler backends can translate the optimized IR to emit code for di�erent
Datalog engines. This architecture readily solves the latter two issues discussed above: optimizations
operate on the shared IR and are not speci�c to any Datalog system, and Datalog programs can be
linked after translation into the IR. But, how can we address the wide variety of language features
supported (and required) by existing Datalog dialects?

The key contribution of this work is the design of a typed multi-level IR for Datalog. A multi-level
IR consists of a core IR and any number of IR extensions. Datalog dialects that require language
features outside the realm of standard Datalog can add (shared) IR extensions and then target the
extended IR. IR extensions generally implement lowerings that desugar the extended IR nodes.
IR extensions can also be stacked on top of each other, such that progressive lowering eventually
produces core IR code. Optimizations can act on any level of abstraction rather than on core IR
only. And not all IR extensions have to be lowered: compiler backends may provide built-in support
for any number of IR extensions.

The most important conceptual contribution of this work is the design of a novel type system for
Datalog. We want the Datalog IR to be typed so that (i) optimizations can soundly assume valid IR
as input and (ii) bugs in generated code are detected before subsequent compiler passes transform
the code. However, existing type systems for Datalog do not guarantee type safety because they
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Fig. 1. Compiler framework for Datalog using a typed multi-level IR that permits optimizations at each level.

neglect variable bindings, or are overly restrictive and preclude IR extensions [Bembenek et al.
2020; Zook et al. 2009]. For example, the following rule aims to produce pairs (- ,. ), but . is not
bound in the rule’s body, because � is not bound, because the second call is negative.

broken_path(- ,. ) :� edge(- ,/ ),¬edge(- ,�),. = �.

The property violated here is known as range restriction in the Datalog literature, but there are
other cases where variable resolution can lead to run-time failure. To ensure type safety, we design
a bidirectional, bipolar, and �ow-sensitive type system for Datalog IR, using three-valued typing
contexts. The type system is extensible, so that IR extensions can provide their own static semantics,
allowing us to validate IR code at all levels. We have implemented the compiler framework and
developed 16 typed IR extensions whose static semantics has unprecedented precision. For example,
one IR extension implements the magic set transformation, which has a substantial e�ect on variable
bindings, all covered by our type system.

In summary, this paper makes the following contributions:
• We analyze challenges for generating Datalog and show how a multi-level IR helps (Section 2).
• We present a core Datalog IR and its extensible type system (Section 3).
• We develop IR extensions with complex lowerings and capture their static semantics (Section 4).
• We connect 4 Datalog frontends and 3 Datalog backends to our framework (Section 5.1).

2 Why We Need a Multi-level Datalog IR
Our goal is to design a compiler framework for Datalog that supports any Datalog dialect and can
target any Datalog solver. In this section, we introduce a motivating example to highlight typical
issues with generating Datalog code.

Our motivating example stems from the domain of program analysis, which is a frequent use case
of Datalog. For example, Doop de�nes points-to analysis for JVM bytecode in Datalog [Bravenboer
and Smaragdakis 2009]. Imagine we want to improve the precision of Doop by adding an abstract
interpreter that predicts the sign of numbers to decide whether a conditional jump can occur or
not. Doop is implemented in Sou�é and it certainly should be possible to implement an abstract
interpreter in Sou�é, too. However, since the abstract interpreter is a recursive function, we would
much rather implement it in a functional Datalog dialect, compile it to the Datalog IR, and link it
with the Doop points-to analysis written in Sou�é.
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data Sign = Top | Pos | Neg | Zero

data AbsVal = Bottom | Num(Sign)

def absEval(e: Exp): AbsVal = e match
case AddExp(e1, e2) => (absEval(e1), absEval(e2)) match
case (Num(s1), Num(s2)) => Num(add(s1, s2))

case _ => Bottom

case NumExp(i) =>
if (i < 0) Num(Neg)

else if (i > 0) Num(Pos)

else Num(Zero)

def add(v1: Sign, v2: Sign): Sign = (v1, v2) match
case (Top, _) | (_, Top) | (Neg, Pos) | (Pos, Neg) => Top

case (_, Zero) => v1

case (Zero, _) => v2

case (Neg, Neg) => Neg

case (Pos, Pos) => Pos

Fig. 2. Sign analysis wri�en in a functional language. How can we compile this code to Datalog?

absEval(e: Exp, s: AbsVal)

absEval(e, s) :-

input(e), ?AddExp(e, e1, e2), // Match and destruct Add expressions

absEval(e1, v1), absEval(e2, v2), // Evaluate both arguments

?Num(v1, s1), ?Num(v2, s2), // Match and destruct evaluation results

add(s1, s2, a), s = !Num(a). // Compute and return abstract addition result

absEval(e, s) :-

input(e), ?AddExp(e, e1, e2),

absEval(e1, v1), absEval(e2, v2),

?Bottom(v1), // The first evaluation result is not a Num

s = !Bottom. // Error state

absEval(e, s) :-

input(e), ?AddExp(e, e1, e2),

absEval(e1, v1), absEval(e2, v2),

?Num(v1, _), ?Bottom(v2), // The first result is a Num, but the second result is not

s = !Bottom. // Error state

absEval(e, s) :-

input(e), ?NumExp(e, i), // Match and destruct Num expressions

i < 0, // Only proceed if the integer literal is smaller than 0

sign = !Neg, s = !Num(sign) // Return an abstract Num result with Neg sign

absEval(e, s) :-

input(e), ?NumExp(e, i),

i >= 0, // Mutually exclusive rules, by negating the first condition

i > 0, // Check the second condition

sign = !Pos, s = !Num(sign). // Return an abstract Num result with Pos sign

absEval(e, s) :-

input(e), ?NumExp(e, i),

i >= 0, // Negate the first condition

i <= 0, // Negate the second condition

sign = !Zero, s = !Num(sign). // Return an abstract Num result with Zero sign

Fig. 3. Result of compiling function absEval from Figure 2 to Datalog with ADTs.
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To keep our example tractable, we use a simple expression language here rather than bytecode:

(programs) ? ::= 4 (expressions) 4 ::= = | 4 + 4

Figure 2 shows an abstract interpreter for this expression language. We assume that the expressions
of our analysed language are encoded as an algebraic data type (ADT). To analyse an expression,
we recursively call absEval to produce an abstract value: Bottom if the computation fails or a number
Num(s) with its sign s. To analyze an AddExp, we abstractly evaluate both arguments and perform
abstract addition of sign lattice values using the add function. We determine the sign of a numeric
literal with an if expression consisting of three branches.

2.1 Why Generating Datalog Is Di�icult
We need a multi-level Datalog IR because generating Datalog is di�cult. To illustrate why, let us
compile this abstract interpreter to Datalog. We encode functions as relations and use a standard
Datalog extension for ADTs as supported by various Datalog engines, such as Sou�é [Scholz
et al. 2015] and Viatra [Varró et al. 2016]. This compilation approach loosely follows the strategies
described by [Pacak and Erdweg 2022]. We show the generated Datalog in Figure 3, but only for
absEval because the Datalog code is bloated. Let us step through the translation process to identify
the challenges involved. We start by compiling the outermost pattern match in absEval to Datalog
and already encounter the �rst challenge:

Structural Mismatch. Most programming languages feature structured programming: nested
control constructs to organize the program. For example, the abstract interpreter uses pattern
matching and conditionals. However, Datalog consists of an entirely �at structure: relations consist
of alternative rules, which consist of conjunctive atoms. This rigid structure makes Datalog an
inconvenient compilation target. For example, Pacak and Erdweg [2022] present a compiler from a
functional expression language to Datalog that has this signature:

compile : exp ! P(term ⇥ P(atom))
compile(5 (41, . . . , 4=)) =

{(~, {5 (C1, . . . , C=,~)} [ 01 [ . . . [ 0=) | (C1,01) 2 compile(41), . . . , (C=,0=) 2 compile(4=)}
An expression is translated to a set of alternatives, each producing one value (encoded as a term)
guarded by a set of atoms. We show their translation of function applications, which is fairly
complex. Since each argument expression compiles to a set of alternatives, the compiler has to
compute the Cartesian product of all alternatives in a set comprehension, and for each alternative, it
has to merge all atoms from the compiled arguments. This is a lot of accidental complexity. Ideally,
we would like the compiler to be much simpler:

compile : exp ! term
compile(5 (41, . . . , 4=)) = 5 (compile(C1), . . . , compile(C=),~);~

This is incompatible with Datalog’s �at syntactic structure and the generated code shown in Figure 3.
In particular, nested pattern matching and conditionals cause problems, because they need to be
�attened into what amounts to disjunctive normal form. But that is not enough.

Control Mismatch. Most programming languages have control �ow in the sense that the order
in which instructions are executed matters. This is not the case for Datalog. Conceptually, in
Datalog, all alternative rules of a relation are executed simultaneously and repeatedly until reaching
a �xpoint. This makes targeting Datalog di�cult. Consider again our example from Figure 2. The
abstract interpreter absEval is order-dependent in three places.
First, the default pattern for the nested pattern match may only be considered after all other

alternatives failed. In Figure 3, we can see that the �rst generated Datalog rule covers the successful

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 327. Publication date: October 2024.



327:6 David Klopp, Sebastian Erdweg, and André Pacak

case where e1 and e2 both evaluate to numbers. To encode the default pattern correctly, we must
generate rules that check that no other pattern matches. The generated code does that by generating
one rule for each combination of (v1,v2) that does not match (Num(_),Num(_)). Computing the correct
set of rules quickly becomes complex. We would much rather compile the default pattern to a single
rule guarded by Not(?Num(v1,_),?Num(v2,_)), which uses a generic negation IR extension.
Second, and similar to pattern matching, the branches of the conditional expressions may only

be considered after evaluating all relevant conditions. In particular, the negated condition must
be asserted in the else branch, and nested conditionals must evaluate all relevant conditions. To
make sure the original execution order is correctly re�ected in the generated code, the generated
rules must be mutually exclusive so that there is no non-determinism. Rather than requiring each
compiler to ensure this property, we would prefer a well-tested IR extension for Boolean expressions
and conditionals that can be shared by di�erent compilers.
Third, we cannot enumerate the result of absEval for all 4 2 exp and should only consider

expressions provided as arguments to absEval in some main function. Indeed, to produce valid
Datalog code, the compiler must generate a relation input that enumerates all actual inputs of
absEval. In Figure 3, we include a call to input(e) at the beginning of each rule to ensure e only ranges
over the actual inputs. The input relation can be generated by a demand transformation [Tekle
and Liu 2010] that each compiler must implement. Instead, we would like to provide a single IR
extension that realizes this feature and that can be reused across compiler frontends.

Atoms Are Second-Class. Unlike terms, atoms do not produce a value and generally are second-
class citizens in Datalog. Consequently, we cannot store the result of executing an atom, we cannot
provide an atom as an argument in a call, and we cannot abstract over atoms. For example, in the
generated code in Figure 3, numeric comparisons such as i < 0 are encoded as atoms, and negation
requires dedicated rewritings (e.g., i < 0 becomes i >= 0) rather than negating the resulting Boolean
value. Consider a slight extension of absEval, where we want to track a number’s sign and parity:

val ev = even(i)

if (i < 0 && ev) Num(NegEven)

else if (i < 0) Num(NegOdd)

else if (i > 0 && ev) Num(PosEven)

else if (i > 0) Num(PosOdd)

else Num(Zero)

This has introduced various issues. First, negating the �rst condition yields a disjunction i>=0 || !ev,
which means all subsequent rules will be duplicated after �attening because of the structural
mismatch. Second, if Booleans are atoms without values, what should we store in variable ev? Third,
it will be di�cult to support user-de�ned Boolean connectives, because they cannot actually take
or produce Boolean values.

Of course, we can also encode Booleans as terms rather than atoms, so that Boolean values have
a run-time representation. The downside of this approach is the run-time overhead it induces.
We believe a multi-level IR can support Boolean values while mitigating most overheads due to
optimizations at di�erent abstraction levels.

Logic Variables and Their Bindings. Datalog is a logic programming language and, as such,
features logic variables. Logic variables are dynamically scoped and implicitly bound within a
rule, which makes their binding di�cult to reason about. For example, in the generated Datalog
code of Figure 3, input(e) binds e so that ?AddExp(e, e1, e2) subsequently binds e1 and e2. But if we
negate the pattern match not ?AddExp(e, e1, e2), e1 and e2 remain unbound; we are only testing
whether e is not an AddExp. That is, sometimes a term is allowed to bind variables, but other times
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it is only well-typed when variables have been previously bound. Compilers have to know and
adhere to these binding rules when generating Datalog. This is di�cult currently because type
systems for Datalog either ignore variable bindings, which is unsafe, or they are overly restrictive,
which precludes IR extensions.

The challenges described so far render the generation of correct Datalog code complex and
error-prone. How can we streamline and simplify the code generation process?

2.2 How a Multi-level IR Helps Generating Datalog
Rather than generating Datalog code directly, we propose to treat Datalog as a core IR in a multi-
level IR setup. This allows us to introduce IR extensions that make generating Datalog easier. For
example, we can translate the absEval function to the following extended Datalog IR:
absEval(e: Exp@demanded, s: AbsVal)

absEval(e, s) :- e match
case ?AddExp(e, e1, e2) => absEval(e1, n1), absEval(e2, n2), (n1, n2) match

case (?Num(s1), ?Num(s2)) => add(s1, s2, a), s = !Num(a).

case _ => s == !Bottom

case ?NumExp(e, i) =>
{ (i < 0) = true, s = !Num(!Neg) }

_ { (!(i < 0) && i > 0) = true, s = !Num(!Pos) }

_ { (!(i < 0) && !(i > 0)) = true, s = !Num(!Zero) }

The type signature of absEval declares e to be demanded, meaning it is considered an input to the
relation de�nition. The type annotation @demanded stems from an IR extension. We then use pattern
matching (another IR extension) on algebraic data types (also an IR extension). Instead of �attening
the nested conditionals, we use a disjunction (an IR extension) over blocks (also an IR extension)
and encode the conditions as Boolean terms (another IR extension).

Importantly, it is not necessary to support all of these IR extensions in compiler backends in our
framework. Instead, our multi-level IR progressively lowers IR extensions to simpler forms until
we are left with core Datalog features. For example, pattern matching lowers to IR code that uses
disjunctions and negation, but that does not need pattern matching anymore. We can optimize
the IR code before each lowering as to implement abstraction-speci�c optimizations. In the end,
compiler backends only need to support core Datalog features and primitive values.

3 A Typed IR for Core Datalog
The centerpiece of our compiler framework is a typed and extensible Datalog IR. In this section,
we introduce the core IR and its type system. The core Datalog IR resembles textbook Datalog with
negation: a program consists of rules, which de�ne a head ? (- ) and body 0 consisting of atoms.
Each atom is either a call ? (C) that queries a relation ? or an equation C1 = C2.

(programs) ⇡ ::= sig A (atoms) 0 ::= ?# (C) | C =# C
(signatures) sig ::= ? : ) ⇥ · · · ⇥) (terms) C ::= -
(rules) A ::= ? (- ) :� 0. (polarity) # ::= + | �
- 2 Var ) 2 Type E 2 Val

Core Datalog di�ers from textbook Datalog in two ways. First, textbook Datalog usually permits
constants as terms, but there is only one kind of term in core Datalog: variables. That is, core
Datalog programs cannot create values E ; all values must be drawn from the prede�ned fact base
(i.e., the EDB). This is because we allow (and expect) IR extensions to introduce value domains
and the corresponding literal terms (cf. value extensions in Figure 1). For the time being, we treat
values E and their types ) as opaque placeholders.
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The second di�erence from textbook Datalog is that we mark the polarity of calls and equations
explicitly in core Datalog. In particular, ?� (C) marks a negative call and C1 =� C2 denotes an
inequality constraint. We write C1 =# C2 with # 2 {+,�} to abstract from a speci�c polarity. Calls
and equations without explicit polarity annotation are assumed to be positive.

3.1 Type Safety and Evaluation Order
Well-typed programs may not go wrong. In Datalog, programs can go wrong in two ways. First, a
term may produce a value whose type is incompatible in the term’s context. For example, after
extending the IR with integer addition, we need to ensure that its operands produce integer values.
But even in the core IR, rules must produce tuples that are compatible to the relation’s signature.
We will ensure type compatibility with minimal type annotations using local type inference and, in
particular, a bidirectional type system.
The second kind of run-time error is seemingly simpler, but actually more di�cult to handle:

variable resolution. In Datalog, there are neither explicit variable declarations nor explicit assign-
ments. Instead, variables are bound through predicate calls and equational constraints. For example,
here are three equivalent variants of the recursive path rule:

path(�,⌫) :� edge(��,⇠�), path(⇠•,⌫�).
path(�,⌫) :� edge(��,⇠�), path(⇡�,⌫�),⇠• = ⇡•.
path(�,⌫) :� edge(��,⇠�),⇠• = ⇡�, path(⇡•,⌫�).

We have decorated the rule de�nitions with binding information. A variable - • is a bound occur-
rence of a variable, that is, the variable has previously been assigned a value, which is retrieved
at this occurrence. In contrast, a variable - � is a binding occurrence of a variable, that is, we are
assigning the variable its value(s) at the present occurrence.1
In the �rst rule, we can see that � and ⇠ are binding occurrences in the call to edge: We are

reading their values from the edge relation. Subsequently, ⇠ is a bound occurrence in the call to
path whereas ⌫ is a binding occurrence: the rule computes an equi-join between edge and path on
⇠ . We can equivalently express an equi-join using an equational constraint as the second and third
rules illustrate. The second rule asserts ⇠ = ⇡ at the very end, when both variables have already
been bound. Instead, the third rule assigns ⇠ to ⇡ before querying path. Note that direction of
the assignment ⇠ = ⇡ is determined by the boundedness of ⇠ and ⇡ in the equation, not by their
position: for any pair of terms, C1 = C2 and C2 = C1 have the exact same run-time behavior.
The binding of variables crucially depends on the order, in which the atoms from a rule’s body

are evaluated. This is known as sideways information passing in the Datalog literature. Some
Datalog systems provide a non-deterministic semantics that leaves the evaluation order of atoms
unde�ned, which entails non-deterministic binding information. While sensible for a declarative
language, our Datalog IR is designed to be generated, not handwritten. As such, we expect compiler
frontends and optimizations want to be as explicit about the generated code’s semantics as possible.
Therefore, we de�ne that the evaluation order of atoms in the Datalog IR is left-to-right. All
examples shown have used this evaluation order already.

During the evaluation of Datalog rules, there are certain points where variables must be bound
occurrences. We call these points strictness points. For example, the following four rules violate

1Datalog has set semantics, where all bound variables (-1, . . . ,-= ) together are assigned a set of tuples during run time.
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di�erent strictness points and would fail at run time:

yes(�,⌫) :� ⌫� = “yes”.
sqrt4(- ) :� 4 = - � ⇤ - �.
path(�,⌫) :� �� = ⌫�.
unreachable(�,⌫) :� path� (��,⌫�).

The �rst rule violates what is known as range restrictedness: Each head variable of a rule must
be positively bound in its body. Using our binding annotations, this means each head variable +
must be bound + • at the end of the rule’s body. This ensures Datalog can indeed enumerate all
derivable tuples. Rule yes fails this condition because �� is unbound at the end of the body. The
second rule uses the unbound - as an arithmetic operand. This fails because arithmetic operators
can only be applied to values; they cannot be used to bind variables. The third rule fails because at
least one side of an equation � = ⌫ must be bound to a value. In the fourth rule, the negative call
corresponds to a check (�,⌫) 8 path, which is strict in (�,⌫) and cannot be used to bind variables.

Our goal is to design a type system for Datalog IR that prevents all of the above run-time errors.

De�nition 1 (Type safety.). A Datalog program is type-safe if
(1) all terms have types compatible with the context in which they appear, and
(2) no unbound variables occur at strictness points.

Our type system concretizes this de�nition by stipulating when exactly a term has a compatible
type and where strictness points are precisely. Most prior work focuses on re�nement types for
logic variables to enable optimizations, but does not guarantee type safety since it excludes precise
variable resolution. Formulog [Bembenek et al. 2020] features a safe type system, but it imposes
overly restrictive constraints on variable bindings that preclude many useful IR extensions (cf. the
detailed discussion in Section 6).

3.2 Typing the Core Datalog IR
We present the �rst extensible type system for Datalog that ensures type safety. Ensuring type
safety for Datalog and, in particular, resolving the boundedness of variables correctly requires a
combination of advanced type system features:
Bidirectional. A bidirectional type system checks terms against an expected type whenever

possible, but infers a term’s type when insu�cient contextual information is available. While
we use type inference for terms in equations C1 = C2, we use type checking for calls like
path(�,⇠) with an unknown variable ⇠ , whose type is drawn from the signature of path.

Flow-sensitive. In languages with lexical scoping, the typing context is passed top-down in
environment-passing style. However, Datalog’s logic variables are neither lexically declared
nor bound. Therefore, we de�ne a �ow-sensitive type system that passes the typing context in
store-passing style to communicate new variable bindings from one atom to the next.

Bipolar. Type-safe Datalog requires strictness points where no binding may take place. To this
end, we formulate the type system in a bipolar style: Each typing judgment has a polarity
# 2 {+,�} that determines whether bindings are allowed + or disallowed �.

The type system uses the following four judgments:

(term inference) � `# C ) ) a �
(term checking) � `# C ( ) a �

(atom checking) � `# 0 ok a �
(rule checking) ` ? (- ) :� 0. ÿ

The type of terms can be inferred C ) ) or checked C ( ) as known from bidirectional type sys-
tems. Since variable bindings in terms and atoms are �ow-sensitive, the typing context is threaded
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�(- ) = ) •
C-Var•

� `# - ( ) a �

�(- ) = ) �
C-Var�

� `+ - ( ) a �;- :) •
- 8 � C-Var8

� `+ - ( ) a �;- :) •

�(- ) = ) •
I-Var•

� `# - ) ) a �

�(- ) = ) �
I-Var�

� `+ - ) ) a �;- :) •

? : )1 ⇥ · · · ⇥)= 88 . �8 `#1 ·#2 C8 ( )8 a �8+1 A-Call
�1 `#1 ?#2 (C1, . . . , C=) ok a �=+1

�1 `� C1 ) ) a �2 �2 `#1 ·#2 C2 ( ) a �3 A-EqL
�1 `#1 C1 =#2 C2 ok a �3

�1 `� C2 ) ) a �2 �2 `#1 ·#2 C1 ( ) a �3 A-EqR
�1 `#1 C1 =#2 C2 ok a �3

? : )1 ⇥ · · · ⇥)= �1 = -1:) �
1 ; . . . ;-= :) �

= 88 . �8 `+ 08 ok a �8+1 89 . �A+1 `� - 9 ( )9 a _
Rule

` ? (-1, . . . ,-=) :� 01, . . . ,0A . ÿ

Fig. 4. A bidirectional, flow-sensitive, and bipolar type system for core Datalog that ensures type safety.

as input and output in these judgments. Terms and atoms are checked under a given polarity #,
allowing or disallowing new variable bindings. In particular, typing rules can declare strictness in a
term or atom by setting its polarity to -, which prohibits new bindings. Note that in the core Datalog
IR, atoms are only checked positively. However, some IR extensions introduce nested atoms, where
it is necessary to specify the polarity explicitly.

The typing context must distinguish three states for variables. First, a variable can be unde�ned
- 8 �, meaning we have no information about - . Second, a variable can be declared �(- ) = ) �,
meaning we know its type but no value has been assigned to it yet. And third, a variable can be
bound �(- ) = ) •, meaning we know its type and may read its values. We de�ne the syntax for
typing contexts accordingly:

(contexts) � ::= Y | �;- :) � | �;- :) •

Figure 4 shows the typing rule for core Datalog. Most rules are concerned with variable handling
as expected. There are 2 ⇤ 2 ⇤ 3 = 12 con�gurations to be considered for checking variables because
the type system is bidirectional, bipolar, and the typing context distinguishes three variable states.
The typing rules only list valid cases; the tables below de�ne validity for all combinations:

direction +/- �(- ) valid? rule

check + • yes C-Var•
check + � yes C-Var�
check + 8 yes C-Var8
check - • yes C-Var•
check - � no
check - 8 no

direction +/- �(- ) valid? rule

infer + • yes I-Var•
infer + � yes I-Var�
infer + 8 no
infer - • yes I-Var•
infer - � no
infer - 8 no
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Note that references to bound variables • are always valid. However, declared variables � may only
be referred to in binding contexts that have + polarity. Unde�ned (local) variables can occur at any
time in Datalog, but are only valid in binding contexts where the expected type is known.
The typing rule for calls ?#2 (C1, . . . , C=) is largely standard: We check each argument term C8

against the corresponding parameter type )8 , with a threaded typing context. What is novel here
is how the polarity of the argument check is computed, namely by combining the polarity of the
call #2 with the polarity of the judgment #1. Polarities can be multiplied like arithmetic signs to
determine whether a check is allowed to bind variables or not.

#1 · #2 =

8>>>><
>>>>:

+, if #1 = + and #2 = +
�, if #1 = + and #2 = �
�, if #1 = � and #2 = +
+, if #1 = � and #2 = �

In a positive context, arguments of positive calls are positive (can be bound by the call), but
arguments of negative calls are negative (must be bound prior to the call). We get the inverse
in a negative context: arguments of positive calls are negative, but arguments of negative calls
are positive. That is, terms are positive if they are wrapped in an even number of negations. Or
conversely, calls are strict in their arguments when they are wrapped in an odd number of negations.
For example, not (not p� (- )) checks - in a negative context, because there are three negations.
There are two symmetric rules for handling equations. An equation is valid if at least one of

the terms only refers to bound variables (- polarity). Hence, equations are strict in one of their
arguments, but its position is not predetermined. The type of the other term can be checked against
the inferred type. Like for calls, we multiply polarities to determine whether an equation is positive
(an equality) or negative (an inequality), and use the corresponding polarity for term checking.

Finally, we de�ne the validity of Datalog rules. We construct an initial context for the rule’s
body that marks all head variables as declared -8 : ) �

8 but not bound. We then check all atoms
left-to-right by threading the context. We have carefully set up the type system such that we can
now check for range restrictedness: In the �nal typing context of a rule �=+1, all head variables
must be bound. That is, rules are strict in the tuples (-1, . . . ,-=) they produce.

3.3 Typing Examples
Consider we want to type check the second rule of the standard path example:

path(�,⌫) :� edge+(�,⇠), path+(⇠,⌫) .
The second rule has two head variables, which we initialize in the context as declared variables
and use it to type the �rst atom of the rule:

C-Var�
�:) �;⌫:) � `+ � ( ) a �:) •;⌫:) � C-Var8

�:) •;⌫:) � `+ ⇠ ( ) a �:) •;⌫:) �;⇠:) •
A-Call

�:) �;⌫:) � `+ edge+(�,⇠) ok a �:) •;⌫:) �;⇠:) •

This derivation tree validates the call to edge. Argument � is declared and becomes bound through
the call. Argument ⇠ is unde�ned but also becomes bound through the call. Since the type system
is �ow-sensitive, the second atom is checked in an updated context resulting from the �rst atom:

C-Var•
. . . `+ ⇠ ( ) a �:) •;⌫:) �;⇠:) • C-Var�

. . . `+ ⇠ ( ) a �:) •;⌫:) •;⇠:) •
A-Call

�:) •;⌫:) �;⇠:) • `+ path+(⇠,⌫) ok a �:) •;⌫:) •;⇠:) •

The �nal context � satis�es the range restriction of Datalog rules: Each head variable is positively
bound in the rule’s body: both � `� � ( ) a _ and � `� ⌫ ( ) a _ succeed. Had the second atom
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call been path(⇠,�) instead, ⌫ would not be bound at the end of the rule and � `� ⌫ ( ) a _
would have failed.

Polarities specify strictness points of the language, that is, places where no bindings may occur.
For example, consider again the unreachable rule from Section 3.1:

unreachable(�,⌫) :� path� (��,⌫�).
Recall that this rule is not type-safe because evaluation gets stuck, when the arguments of negative
calls are unbound. Indeed, we cannot construct a typing derivation for the negative call, even
though � and ⌫ appear in the initial context as declared. Let � = �:) �;⌫:) � be the initial context:

E� `� � ( ) a �E E� `� ⌫ ( ) a �E A-Call
� `+ path� (�,⌫) ok a � E� `� � ( ) a _E E� `� ⌫ ( ) a _E

Rule
` unreachable(�,⌫) :� path� (��,⌫�). ÿ

Overall, based on stuck sub-derivations, we obtain four typing errors for this example: both
arguments of path� are illegal in a negative context because there is no inference rule that resolves
to a declared (but not bound) variable in a negative context, and both head variables � and ⌫ fail
range restrictedness because they lack a positive binding. Our type system correctly rejects this
and other unsafe Datalog programs that would fail at run time.

3.4 Type Soundness
We prove soundness for the type system of Core Datalog based on a recent structural operational
semantics of Datalog [Pacak and Erdweg 2023]. This semantics models a top-down evaluation of
Datalog, which is equivalent to the standard bottom-up evaluation, implemented in most Datalog
systems. The top-down semantics is a good match for our type system because it makes bindings
explicit in what is known as supplementary tables in Datalog literature [Green et al. 2013]. A
supplementary table has the form table(- ,+ ) and contains a set of rows + that bind the free
variables - of a rule. As evaluation progresses through a rule and binds more variables, the
supplementary table is extended with additional columns using the bind operation:

bind (- ,+ ,f) = f ùû table(- ,+ )
We can use the bind to tightly relate our typing contexts to sets of value tables it governs:

»�… =
8>><
>>:

{table(Y, ())}, if � = Y
»�0…, if � = �0;- :) �

{bind (- ,+ ,f) | + ✓ »)…,+ < ;,f 2 »�0…}, if � = �0;- :) •

The empty context corresponds to the unit table with no columns and a single row. Variables,
which are declared but not bound in the context, do not add bindings to a value table. Only bound
variables have bindings in the value table and the value must be of the appropriate type »)…. This
semantic speci�cation of contexts nicely de�nes how declared variables di�er from bound variables.
It is also easy to provide a syntactic relation that validates whether a given value table adheres to a
context, which we elided here.

We can now formulate the standard theorems of syntactic type soundness for atoms:

T������ 2 (P�����������). If �1 `# 01 ok a �2 and f1 2 »�1… and f1 ` 01 !� 02 a f2, then
�1 `# 02 ok a �2 and f2 2 »�2….

T������ 3 (P�������). If �1 `# 01 ok a �2 and f1 2 »�1… and 01 is not a value, then there is 02
and f2 such that f1 ` 01 !� 02 a f2.
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There are a few complications in actually conducting these proofs using the semantics by Pacak
and Erdweg [2023]. First, the reduction relation for atoms does not actually yield bindings f2. The
updated bindings are computed in a surrounding relation for reducing rules, using amerge function.
However, it is easy to refactor the reduction rules such that the merge happens in atom reduction
already. Second, calls reduce to an intermediary subquery form, which recursively evaluates until
reaching a �xed-point. Since we are following a syntactic typing discipline, we need to provide a
typing rule for this intermediate form. The syntax of subqueries is fairly involved to allow �xed-
point iterations, and its typing rule follows step. We present a somewhat simpli�ed typing rule
that covers the main usage of subqueries:

? : -1:)1; . . . ;-= :)=
� = -1:) •

1 ; . . . ;-= :) •
=

f0 2 ⇧? (»�…)
fA 2 »�…;

88 . ` A8 ÿ
88 . �8 `#1 ·#2 C8 ( )8 a �8+1

A-Subquery
�1 `#1 sq(?#2 (C),f0,fA ,f, A1 _ . . . _ A=) ok a �=+1

Given the schema of relation ? (including column names), we de�ne � to bind variables for all
columns of ? . The tables f0 and fA must adhere to �. Here, f0 comprises the given arguments of
the subquery, which must be a sub-table of a table in »�… (i.e., a projection of a well-typed result
table). On the other hand, fA collects the results of ? and must be empty or contained in »�…. The
subquery will execute the rules A1 _ . . . _ A= , which must be well-typed. During execution, the
leftmost rule may be partially evaluated already and has to be well-typed under the type of f , a
detail we elided for clarity in the typing rule above. The result �=+1 of a subquery is computed by
iterating over the arguments C8 , which is why the original call is part of the subquery.

P����: T��� ������������ ��� �����. By induction on the typing relation.
• �1 `#1 C1 =#2 C2 ok a �2: Equality atoms reduce in a single step yielding a �ltered table or a table
that binds one extra column. We proceed by inversion of the preconditions for C1 and C2 and
con�rm: When �1 = �2, the reduction semantics indeed only �lters the value table. And when
�2 = �1;- :) •, the reduction semantics indeed binds - in the value table.

• �1 `#1 ?#2 (C1, . . . , C=) ok a �=+1: Calls either reduce to an immediate result if the query was
evaluated before or reduce to a subquery of ? . In the �rst case, the result table has type �=+1
given that the �xed-point cache is well-typed, which we have to establish as separate invariant
inductively. In the second case, it is easy to con�rm that the generated subquery preserves the
type of the call.

• �1 `#1 sq(?#2 (C),f0,fA ,f, A1 _ . . . _ A=) ok a �=+1: There are four reduction rules for subqueries.
Two rules are responsible for reducing the leftmost rule A1 and adding its result to fA , which
preserves the type of the subquery. One rule yields a value table when the subquery reached a
�xed-point, which is equivalent to a call that yields immediately, as discussed above. Finally,
one rule restarts a subquery when it �nished but did not reach a �xed-point yet. The resulting
subquery restarts with an empty fA and is otherwise equal to the original subquery. Thus,
reduction of subqueries preserves types.

É

P����: P������� ��� �����. By induction on the reduction relation.
• Equalities are stuck if both terms are free variables. Case distinction reveals that this cannot
happen for well-typed equations.

• Inequalities are stuck if either term is a free variable. Again, case distinction shows this cannot
happen for any well-typed inequality.

• Calls are never stuck because they either yield an immediate result or spawn a subquery.
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• For subqueries, we distinguish two cases. If there are no more rules to execute, the subquery
result is either unstable (new tuples found) or stable. An unstable subquery is restarted, whereas
a stable subquery reduces to a value table. If there are more rules to execute, we either have
progress in the leftmost rule or the leftmost rule is a result table, which is merged with fA and
then discarded from the rules. In all cases, we have progress.

É

We also need to prove preservation and progress for rule reduction, which reduces a rule’s leftmost
atom stepwise until it yields a value table and can be merged. Atoms are removed from a rule’s
body when their evaluation �nishes, and this repeats until the rule’s body is empty. To reason about
the soundness of this reduction, we provide a typing rule for partially evaluated Datalog rules:

88 . �8 `+ 08 ok a �8+1 Rule’
�1 ` ? (-1, . . . ,-=) :� 01, . . . ,0A . ÿ a �=+1

Preservation and progress hold for rule reduction, because reducing the leftmost atom has progress
and preserves types. Formally, the type soundness for atom reduction and rule reduction has to be
veri�ed simultaneously, since they are mutually dependent. In summary, we conclude that our type
system for Core Datalog is sound with respect to the small-step reduction semantics. As such, Core
Datalog can serve as the basis for type-safe IR extensions, where we have to ensure that lowerings
preserve typing [Lorenzen and Erdweg 2013, 2016]. In this paper, we focus on the foundational
design for a type multi-level Datalog IR and introduce IR extensions without soundness proofs.

4 Typed Extensions of Datalog IR
The core Datalog IR and its type system only support the most basic Datalog operations. When
generating Datalog, it is useful to introduce higher-level IR features (i) to simplify the frontend
compilers and (ii) to enable optimizations at di�erent abstraction levels. In this section, we demon-
strate how our Datalog compiler framework supports typed multi-level IR extensions. We consider
IR extensions in two categories as highlighted in Figure 1: adding new kinds of data and adding
control constructs. We have implemented 16 IR extensions so far: Here we focus on the mechanism
that makes the IR extensible, presenting parts of selected extensions only. We invite the reader to
study the other IR extensions in the open-source code repository.2

4.1 A First Example: IR Extension for Arithmetics
The core Datalog IR does not provide any values or operations to act on them. We de�ne an IR
extension for arithmetics that adds IR nodes for integer and �oating-point constants as well as
standard operations to compare and compute with numbers. We present the additional IR nodes as
an extension of the IR syntax, only mentioning extended and new nonterminals:

(atoms) 0 ::= . . . | C compareOp C
(terms) C ::= . . . | int | dbl | C binOp C
(types) ) ::= . . . | Int | Double
compareOp 2 {<, , >, �} binOp 2 {+,�, ⇤, /,<8=,<0G, . . .} int 2 Int dbl 2 Double

Datalog frontends that feature arithmetics can target the Datalog IR extended with these arithmetic
terms and atoms. The frontend does not need to know how arithmetics is handled downstream,
whether it is lowered to other IR nodes or supported by Datalog backends directly (it’s the latter).
However, frontends need to generate valid IR. Each IR extension must de�ne typing rules to govern

2https://gitlab.rlp.net/plmz/inca-scala
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how the extended IR nodes may be used. For arithmetics, this is rather straightforward; we’ll show
a few representative rules only:

I-Int
� `# int ) Int a �

�1 `� C1 ) ) a �2 �2 `� C2 ( ) a �3 ) 2 {Int,Double}
I-BinOp

�1 `# C1 binOp C2 ) ) a �3

The �rst rule states that an integer literal always has type Int. The second rule assigns type )
to an addition if both operands have type ) and ) is a numeric type. Note that the rule addition
also de�nes strictness points for its operands: Both operands are checked in a negative context `� ,
which asserts all variables occurrences in C1 and C2 are bound occurrences. The inference rule for
comparisons and the checking rules are analogous.

The arithmetic IR does not lower to core Datalog nor to another IR. Therefore, frontend compilers
that (transitively) require the arithmetic IR extension can only be composed with compiler backends
that also support this extension. Since most Datalog solvers have built-in support for arithmetics,
this is not a limitation. But, what if a language feature is not supported by existing Datalog solvers?

4.2 Multi-level IR Extension for Booleans
Languages that compile to Datalog often feature conditional constructs based on Boolean conditions.
However, core Datalog does not provide abstractions for Boolean values or their operations. Rather
than requiring each compiler frontend to encode Booleans as numbers (previous extension), we
introduce a dedicated IR extension for Booleans that lowers to arithmetics. Not only does this
reduce the e�ort for compiler frontends, it also enables Boolean optimizations as we detail in
item 4.6. We add the following IR nodes:

(terms) C ::= . . . | true | false | C boolBinOp C | ¬C | asBool 0
(types) ) ::= . . . | Bool
boolBinOp 2 {&&, | |, . . .}

Besides standard Boolean literals and operations, we also introduce an IR node to convert an atom
into a Boolean term: asBool 0. The reverse operation that encodes a Boolean term C as an atom can
be easily encoded: C = true. The typing rules for Boolean IR nodes are analogous to the rules for
arithmetics. However, Boolean IR nodes do not need to be supported by compiler backends, we can
lower them to other IR nodes instead.

We describe lowerings as a recursive translation function »·… that maps IR nodes of an extension
to other IR nodes. We provide the following lowering for the Boolean IR:

»true… = 1 »false… = 0
»C1 && C2… = »C1…min »C2… »C1 | | C2… = »C1…max »C2… »¬C… = 1 � »C…
»asBool 0… = fresh ' in {{0,' = 1} _ {not 0,' = 0};'}

We encode Boolean literals as 1 and 0, respectively. Conjunction becomesmin, disjunction becomes
max, and negation becomes subtraction from 1. But what is going on in the last equation? To
encode an atom as a Boolean, we must test two alternatives: atom 0 succeeds or it fails. Based on
this observation, we set a fresh variable ' to 1 or 0 accordingly. In place of the original IR node,
this variable ' can then be used as a Boolean term.

The lowering for asBool is quite involved and uses three additional IR extensions not introduced
yet: an extension for negating atoms (not), an extension for blocks that allows atoms to appear
within terms, and an extension for disjunctions that supports nested alternatives (rather than
top-level rules only). Before discussing these extensions, we should inspect the typing rule for
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asBool to validate that the lowering preserves typing:

�1 `� 0 ok a �2 I-AsBool
�1 `# asBool 0 ) Bool a �2

The typing rule speci�es that asBool computes a Boolean value. Indeed, the lowering yields G
of type Int, which is the type Bool lowers to. Other than that, the typing rule requires that 0 is
valid, namely in a negative context. This strictness point is crucial because the lowering applies
not to 0. For example, consider asBool(- � = 5) with an unbound - . This code is only valid in a
positive context that can bind- . Had we checked 0 under a positive polarity, this example would be
well-typed but the lowered code would not: fresh ' in {{- =+ 5,' = 1}_ {- =� 5,' = 0};'}. Since
- is unbound, the negative equation in the second alternative is invalid. This is a good example,
illustrating why variable resolution needs to be validated together with type compatibility: The
binding rules are complex such that generating valid code is not easy. Our validation procedure
runs after each lowering step such that we can identify erroneous lowerings.
Another multi-level IR extension we have implemented is �rst-class sets. In Datalog, sets are

encoded as relations, which are always second-class entities at the top-level. We added an IR
extension for creating and computing with set values. This is inspired by Pacak and Erdweg [2022],
who compile a functional programming language to Datalog. They eliminate �rst-class sets by
defunctionalization, which creates top-level relations that dispatch on the set constructor. We
realized that their approach is not speci�c to their particular frontend language, but useful and
realizable across frontends in the IR.

4.3 Structural IR Extensions
The structure of Datalog is rigid, making it unnecessarily complicated to generate Datalog code:
• Negation is a �ag on calls and equations, not an operation on atoms.
• Atoms can only occur at the top-level of rules, but not be nested.
• Alternatives can only be encoded as top-level rules, but not within a single rule.

The literature on code generation has long recognized that such structural constraints create tension
for code generators. For example, expression-based languages such as Racket bene�t from having
only a few syntactic categories [Flatt et al. 2023]: de�nitions, bindings, expressions. To target more
rigid languages such as Java, where statements may not appear within expressions, Bravenboer and
Visser [2004] introduced expression blocks {B1; . . . ; B= ; 4} that desugar to standard Java by lifting the
statements and leaving the expression in place. We follow this line of work and introduce auxiliary
IR extensions that improve the targetability of Datalog IR.

(atoms) 0 ::= . . . | not 0 | {0} | 0 _ 0
(terms) C ::= . . . | {0; C}

We allow not for negating atoms, atoms can be grouped into a block {01, . . . ,0=}, and we can
describe disjunctions inline. Lastly, we allow terms to contain blocks, akin to expression blocks.
The lowering of these extensions is fairly simple. First, we transform the program into disjunctive
normal form as required by core Datalog. That is, disjunctions become top-level alternative rules
that contain (possibly negated) atoms, which do not contain any more nested atoms. Second,
eliminate negation based on an extensible mapping of supported atoms: �ip the polarity of calls
and equations, eliminate double negations. We don’t show the de�nition of the lowerings here, but
instead focus on the typing rules for these extensions.
The typing rules for our structural IR extensions not, block, and disjunction are non-trivial.

Again, this is because we need to capture variable resolution precisely. We have deliberately set up
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our type system to accommodate structural IR extensions and their typing:

�1 `� ·# 0 ok a �2 A-Not
�1 `# not 0 ok a �2

88 . �8 `# 08 ok a �8+1 A-Block
�1 `# {01, . . . ,0=} ok a �=+1

�1 `+ 0 ok a �2 �2 `# C ) ) a �3 I-Block
�1 `# {0; C} ) ) a �3

� `# 01 ok a �1 � `# 02 ok a �2 A-Or
� `# 01 _ 02 ok a �1 u �2

The typing rule for not 0 may appear trivial, but note the polarity of the premise � · #. Recall
from Section 3 that polarities can be multiplied like signs. Therefore, � · # inverts the sign of #.
The negated atom 0 may bind variables if and only if the not 0 appears in a negative context. In
particular, note that the polarity of not (not 0) is equal to the polarity of 0; double negation is
eliminated:

�1 `# 0 ok a �2 A-Not
�1 `� ·# not 0 ok a �2 A-Not

�1 `# not (not 0) ok a �2
Consequentially, a term may bind variables if it is wrapped in an even number of negations.

The rule for atom blocks {01, . . . ,0=} should be unsurprising. However, the rule for term blocks
{0; C} is interesting, because it unconditionally checks the embedded atom under a positive polarity.
This is because the lowering will eventually lift the atom to the top of a rule, where all atoms are
checked positively (cf. Rule in Figure 4).

For disjunctions 01 _ 02, we again have to ensure variables are correctly resolved. In particular,
we must account for situations where one alternative binds a variable but the other does not. This
is usual for �ow-sensitive type systems, where the bindings of alternative branches have to be
merged. We extend the merging to our typing contexts, which distinguish three variable states:
unde�ned, declared, and bound. Speci�cally, typing contexts form a lattice- 7! ) ⇥ {8, �, •}, where
unbound variables default to ?8. The merge operation then is the standard meet operation on this
lattice, given the order 8 < � < • on variable bindings. This means, a variable is only bound after a
disjunction if it is bound in both branches, it is unbound if it is unbound in either branch, and it is
declared in all other cases. Should the resulting context map a variable to a bottom type ?� or ?•,
this indicates a type error: The branches assigned con�icting types to the variable.

4.4 Demanded Parameters, a Magical IR Extension
The demand transformation (aka., magic set transformation) is an optimization technique for
Datalog, where the domain of relations is narrowed to �t its queries, avoiding the derivation of
irrelevant tuples [Tekle and Liu 2010]. But in generating Datalog code, the demand transformation
ful�ls another purpose: It can be used to encode the control �ow of a frontend language [Pacak
and Erdweg 2022]. Technically, the demand transformation enforces input/output modes on the
columns of all relations R. It does that by generating an auxiliary input relation input_R, which
enumerates all inputs provided to R. Rules of R are then augmented with an additional guard R(-In),
binding all input variables R. For example, this makes it feasible to encode functions with a in�nite
domain as Datalog relations:

inc(� ,') :� input_inc(� ),' = � + 1.

Without the call to input_inc, this rule fails to type check, because � is not bound in the addition.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 327. Publication date: October 2024.



327:18 David Klopp, Sebastian Erdweg, and André Pacak

We want to support the demand transformation as an IR extension. To this end, we extend
relation signatures to allow annotations of input and output positions:

(signatures) sig ::= . . . | ? : PT ⇥ · · · ⇥ PT
(parameter types) PT ::= ) � | ) •

Parameter type) � is the default and corresponds to a regular, non-demanded parameter. In contrast,
parameter type ) • is a demanded parameter that must be provided as input to the relation. We can
directly use these parameter types for the initial context used for checking Datalog rules:

? : PT 1 ⇥ · · · ⇥ PT= �1 = -1:PT 1; . . . ;-= :PT= 88 . �8 `+ 08 ok a �8+1 89 . �=+1 `� - 9 ( )9 a _
` ? (-1, . . . ,-=) :� 01, . . . ,0A . ÿ

? : PT 1 ⇥ · · · ⇥ PT= 88 . �8 `min(#1 ·#2,sign(%)8 ) ) C8 ( )8 a �8+1

�1 `#1 ?#2 (C1, . . . , C=) ok a �=+1

We also adopted the rule for calls to account for parameter types with demand. Essentially, we
make sure that arguments for demanded parameters always have negative polarity. To this end, we
compute the polarity for an argument through a sequence of helper functions:

min(#1, #2) =
⇢
� if #1 = � or #2 = �
+, otherwise sign(PT ) =

⇢
+ if PT = ) �

� if PT = ) •

The typing rules predict the variable binding in the lowered code. A rule ? (-1,-2) :� 01, . . . ,0A .
with demanded parameter-1 transforms to ? (-1,-2) :� input_p(-1),01, . . . ,0A . with no demanded
parameters. Still, the initial typing context -1:) •

1 ;-2:) �
2 of the original rule is valid for 01, . . . ,0A

because the added guard binds -1. Moreover, the �rst argument from all calls to ? is enumerated in
input_p, which is safe because they were required to be bound.

This IR extension really highlights the �exibility of our multi-level IR and the expressiveness of
its type system. To the best of our knowledge, the impact of the demand transformation on variable
resolution has never been captured by a static semantics before.

4.5 Impure Datalog
Datalog frontend languages sometimes provide mutable state or other impure Datalog features. For
example, Dedalus features stateful relations for encoding messages between distributed actors [Al-
varo et al. 2010]. And one of our case studies supports dynamic object allocation, which is also
stateful. We provide a generic IR extension to support these and other impure language features.

(atoms) 0 ::= . . . | impure[IK,) ] 0 with - := C
IK 2 ImpurityKind

The impure atom allows Datalog programs to encode state of type ) , locally bound to - , and
updated by C . Conceptually, an impure atom of kind : reads and writes to a global variable ST: :

impure[:, Int] % (() with ( := ( + 1
impure[:, Int] & (') with ' := 0

{ ( := ST: , % ((), ST: := ( + 1
' := ST: , & ('), ST: := 0

Technically, the lowering encodes the global state by state passing for each impurity kind: through-
out all relations that (transitively) interact with an impure atom of a given impurity kind, the
containing relation is extended with an input and an output parameter for that state. Within each
such relation, the state is threaded from one atom to the next, writing the updated state to fresh
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Datalog variables.

�1 = �;- :) • 88 . �8 `# 08 ok a �8+1 �=+1 `� C ( ) a �=+2 �0 =
⇢
�=+2;- :�(- ) if - 2 �
�=+2 � - if - 8 �

� `# impure[:,) ] 01, . . . ,0= with - := C ok a �0

Our type system can precisely capture the contract of the impure atom. Within the impure context,
the local state variable - is bound as de�ned by �1. After processing the atoms, C must yield an
updated state of type ) . In the end, since - is only accessible locally, we restore the binding of -
from the original context �.

4.6 Summary
We have implemented 16 typed IR extensions and presented a subset of them in this section. In
particular, we have demonstrated that IR extensions can gracefully extend the type system of the
Datalog IR to support validity checking. It should be noted that almost all IR extensions interact
with variable resolution, but for di�erent reasons:
(1) The extension de�nes strictness points (e.g., arithmetics, Boolean, data, set, tuples, aggregation).
(2) The lowering generates auxiliary variables that may not shadow existing ones [Erdweg et al.

2014] (e.g., Boolean, set, tuples, impure).
(3) The extension moves or negates atoms to change their polarity (e.g., asBool, negation, blocks).
The design of a type system for Datalog IR that can accurately describe variable bindings is a key
contribution of this paper. We have shown the type system not only captures the static semantics
of core Datalog, but can be extended to specify complex constraints for various IR extensions. This
way, our compiler framework can check the validity of generated IR code at each level of the IR.
That is, we can detect invalid IR code where it has been generated and blame the corresponding
generator: a compiler frontend, an IR lowering, or an optimization.

Our compiler framework supports the description of compiler pipelines that interleave optimiza-
tions and IR lowerings. This paper is really focused on the design of an extensible Datalog IR and
its type system, and we do not have space to describe all optimizations at length. However, our
implementation already supports some optimizations, which can either run at any IR level or at
speci�c IR levels. In the next section, we will �rst extend our framework with multiple frontends
and backends and then discuss some of these level-speci�c optimizations.

5 Evaluation
We �rst implement our compiler framework and extend it with multiple frontend and backend
systems as indicated by Figure 1. Afterward, we show that the multi-level nature of our IR enables
new possibilities for optimizations, that are only possible as long as an IR extension is not yet
lowered. That is, existing backend systems, such as Sou�é are unable to optimize the code on their
own without our compiler framework.

5.1 Connecting Existing Datalog Frontends and Backends
We claim that the typed Datalog IR establishes a solid foundation for a generic compiler framework
for Datalog. As such, a compiler framework using the IR should be able to target various existing
Datalog solvers, and it should be possible to build compiler frontends for various existing Datalog
dialects. To evaluate this claim, we have implemented an actual compiler framework for Datalog
based on the IR described here and we have built 4 compiler frontends and 3 compiler backends.

Implementation of the IR. We have implemented the extensible IR as described in this paper
as open data types in Scala. We encoded the nonterminals of the IR as interfaces and the concrete
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IR nodes as classes implementing them. Each IR node can extend the core type system, and we
use mix-in inheritance to compose the various extensions into a single type checker. Overall, the
implementation is relatively close to the formal development presented in the paper. The code is
available open source.3

Building Compiler Frontends. We evaluated if our compiler framework and the Datalog IR are
general enough by developing 4 compiler frontends for existing Datalog dialects. First, we support
the Datalog dialect of bddbddb, a Datalog engine that is known for its binary decision diagram
usage [Whaley and Lam 2004]. Second, we developed a frontend for Sou�é, which already required
quite a few IR extensions. Third, we support IncA’s functional Datalog frontend and compile it to
the IR, for which we reimplemented the compiler from Pacak and Erdweg [2022] in our framework,
targeting a heavily extended Datalog IR. And �nally, we have developed a compiler frontend for an
object-oriented Datalog dialect that supports dynamic dispatch, dynamic object allocation, and
mutable �elds [Klopp et al. 2024].

Note that a pure Datalog frontend, extended with all of our IR extensions could also be bene�cial
for implementing logic programs directly. We have not implemented such a frontend yet and instead
focused on compiling frontend dialects. However, the only thing missing for such a frontend is a
suitable parser.

Frontend language Impl. size Used IR extensions

bddbddb 177 LoC arithmetics
Sou�é 299 LoC arithm., bool, alg. data, strings, not, block, or
Functional IncA 243 LoC arithm., bool, alg. data + match, demand, sets, maps, strings,

tuples, aggregate, not, block, or, polymorphism
Object-oriented 675 LoC like IncA + impure + mono aggregate

The table above summarizes our experience: It is relatively easy to add compiler frontends. The
code size for the IR extensions is not important here (and not included in Impl. size), because their
implementations are shared across frontends. For example, the object-oriented Datalog dialect
uses all of the same IR extensions as functional IncA, plus two additional extensions. We expect
to discover more useful IR extensions as we connect additional Datalog dialects to our compiler
framework.

Targeting Existing Solvers. We developed three compiler backends for our Datalog compiler
framework. One backend targets Sou�é [Scholz et al. 2016], the other targets the Viatra solver
used by IncA [Szabó et al. 2016], and the third targets the Ascent engine in Rust [Sahebolamri
et al. 2022]. Target platforms support di�erent feature sets; the compiler backend can choose which
IR extensions it supports directly rather than using a lowering. For example, Sou�é has built-
in support for arithmetics, strings, algebraic data, and non-recursive aggregation. The compiler
backend for Sou�é translates the corresponding IR nodes directly to Sou�é code. Sou�é also
supports nested disjunction and negation, but we opted to lower these features in our compiler
framework for compatibility with other extensions. Technically, we realized the backend as a
tree-to-tree transformation from the IR to a Sou�é AST in 100 LoC in Scala, supported by 277 LoC
for the AST de�nition and printer.

The second compiler backend targets IncA’s incremental Datalog solver Viatra [Varró et al. 2016].
Viatra is a Java API that can be used to create graph patterns, which correspond to Datalog relations.
Viatra does not support any Datalog extensions directly, but it can execute any JVM code to produce
or modify values. To target Viatra, we added an auxiliary IR extension that embeds Scala types
3https://gitlab.rlp.net/plmz/inca-scala
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and code into Datalog. We then �rst lower the IR extensions for arithmetics, strings, algebraic data
types, and aggregation to the Scala IR extension. And then we translate Datalog with embedded
Scala to Scala code that invokes the Viatra API in 271 LoC.

Lastly, the third compiler backend generates Rust code that exercises the Ascent Datalog engine.
An Ascent Datalog program is a Rust program that uses Rust macros to declare Datalog rules. We
modeled a subset of the Rust AST and translate the Datalog IR to that AST in 213 LoC, supported
by 408 LoC for the AST and its printer.

There are two lessons to take away from the 3 compiler backends we developed. First, developing
compiler backends is relatively low e�ort, because backends can choose which features they want
to support directly. Even for Viatra, which does not provide a Datalog-like input language, we
were able to realize the backend in a few hundred lines of code. This indicates that it is feasible to
connect a wide range of existing Datalog solvers to our compiler framework. Second, our compiler
framework enables us to run the same Datalog program against multiple existing Datalog solvers.
This is a cornerstone for the development of Datalog optimizations, making it possible to evaluate
the e�ect of an optimization on di�erent solvers. For example, we were able to execute a Doop
analysis written in Sou�é with all three Datalog backends through our compiler framework.

Engine Sou�é Sou�é parallel Viatra Ascent Ascent parallel

Running time (s) 10.29 8.42 14.62 29.96 18.13

Notably, all runs stem from a single Datalog source �le, processed by a single compiler frontend,
passed through a single optimization pipeline, and then handed o� to three di�erent backends for
execution. The performance of Datalog engines has never been more easy to compare.

5.2 Exploiting Higher-level Abstractions for Optimizations
Besides supporting multiple frontends and backends, the multi-level IR of our compiler framework
also opens up the possibility for new optimizations. We can leverage domain-speci�c knowledge at
each abstraction level to apply optimizations before lowering them. Conversely, the optimization
potential for low-level code that does not use high-level abstractions is rather small. For instance,
the Doop analyses written in Sou�é are low-level and hard to optimize because they only leverage
three extensions: strings, arithmetics, and nested disjunctions. However, when compiling complex
frontend languages to Datalog as illustrated in Section 2, we often use high-level abstractions to
decrease the implementation e�ort. Therefore, generated Datalog code can often be optimized
when using our multi-level IR.

We showcase two optimizations our compiler framework enables: a Boolean optimization and
an optimization for sets. These optimizations are only applicable before lowering because, after
lowering, the necessary algebraic properties are no longer evident.

Optimizing Boolean Expressions. Consider wewant to compile a functional program toDatalog
(as done by Pacak and Erdweg [2022]) and optimize it using our compiler framework. We show
a complete example in Figure 5, where function f uses conditionals over two input parameters x

and y to select a sub-computation 58 . We compile this program to Datalog using the Boolean IR
extension as shown in the top-left Datalog code in Figure 5: Each sub-computation is guarded
by the conditions along its path, negating the if condition when selecting the else path. Observe
that sub-computation 52 is actually unreachable since it is not possible for ¬x && y and x && y to
be true simultaneously. However, without optimization this property gets lost. The bottom-left
Datalog excerpt in Figure 5 shows the lowered code without optimization. In particular, we obtain
min(min(1-x, y), min(x, y)) for sub-computation 52, which cannot be reduced to 0 (representing
false). Thus, the rule’s guard has to be evaluated at run time, and sub-computation 52 is reachable.
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// A functional program to be compiled to Datalog

def f(x: Bool, y: Bool) = {

if (x) {

if (x && y) { 50 }

else { 51 }

} else if (y) {

if (x && y) { 52 }

else { 53 }

} else {

54
}

}

Compiled without optimization Compiled with optimization

f(x, y) :- (x && (x && y)) = true, 50.

f(x, y) :- (x && ¬(x && y)) = true, 51.

f(x, y) :- ((¬x && y) && (x && y)) = true, 52.

f(x, y) :- ((¬x && y) && ¬(x && y)) = true, 53.

f(x, y) :- (¬x && ¬y) = true, 54.

f(x, y) :- (x && y) = true, 50.

f(x, y) :- (x && ¬y) = true, 51.

f(x, y) :- false = true, 52. // fails

f(x, y) :- (¬x && y) = true, 53.

f(x, y) :- (¬x && ¬y) = true, 54.

Lowered without optimization Lowered with optimization

f(x, y) :- min(x, min(x, y)) = 1, 50.

f(x, y) :- min(x, 1-min(x, y)) = 1, 51.

f(x, y) :- min(min(1-x, y), min(x, y)) = 1, 52.

f(x, y) :- min(min(1-x, y), 1-min(x, y)) = 1, 53.

f(x, y) :- min(1-x, 1-y) = 1, 54.

f(x, y) :- min(x, y) = 1, 50.

f(x, y) :- min(x, 1-y) = 1, 51.

f(x, y) :- min(1-x, y) = 1, 53.

f(x, y) :- min(1-x, 1-y) = 1, 54.

Fig. 5. A functional program with conditionals and the corresponding generated Datalog code in our multi-
level IR. The generated code contains booleans that we lower to arithmetics. On the le�, we lower the Boolean
code without optimization; on the right, we optimize the Boolean code before lowering.

We have implemented an optimization for the Boolean IR that rewrites Boolean formulas ac-
cording to their algebraic properties. Using this optimization, we obtain the top-right Datalog
code in Figure 5 before lowering. We illustrate the e�ect of the optimization using colors: red
marks deletions in the unoptimized code and blue marks insertions in the optimized code. This
way, we can see that all but the last rule have been improved by the optimization. The subsequent
lowering yields the bottom-right Datalog program, where the third rule was eliminated due to the
contradiction 0 = 1. This shows how our multi-level Datalog IR allows optimizations to target the
appropriate abstraction in a way that would not be possible if all optimizations happened after
lowering to core Datalog.

Optimizing Set Unions. Our multi-level Datalog IR enables optimizations that have a signif-
icant performance impact. To this end, we designed, implemented, and micro-benchmarked an
optimization for set operations to show the performance impact that extension-speci�c optimiza-
tion can have. As shown by Functional IncA [Pacak and Erdweg 2022] and DataFun [Arntzenius
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Fig. 6. Measuring the performance impact of computing the union over an increasing number of sets.

and Krishnaswami 2016], sets are a natural extension for Datalog since they enable higher-order
relations: Relations that take other relations (encoded as sets) as inputs.

Our compiler framework supports an IR extension for creating and operating on �rst-class sets
as indicated in Figure 1. We lower sets by defunctionalization as described by Pacak and Erdweg
[2022]: We generate algebraic data types (ADTs) whose constructors identify the expression that
constructs the set, and we generate a relation that enumerates the elements of a set given its ADT
value. For example, each set expression 0 [ 1 in the program yields a unique constructor S8 and the
expression is rewritten to S8(A,B), where A and B are the defunctionalized encodings of a and b. The
relation that enumerates the elements of S8(A,B) then features two dedicated rules to propagate the
elements of A and B:

S_elem(s, x) :- ?S8(s, A,B), S_elem(A, x).

S_elem(s, x) :- ?S8(s, A,B), S_elem(B, x).

In principle, Datalog backends could recognize this propagation logic to optimize the generated code.
Unfortunately, this is beyond their capabilities as we show empirically using a micro benchmark
(0 [ 1) [ · · · [ (0 [ 1). If we repeat the union of = times, existing Datalog backends require time
linear in =. We con�rm this analysis by measuring the running times for Sou�é, Ascent, and Viatra
for increasing =, as shown in Figure 6. Note that Viatra is in its own diagram because it is orders of
magnitude slower, yet it supports incremental Datalog evaluation, which we did not consider here.
We have implemented an optimization for the Set IR extension that automatically optimizes

this repeated union to 0 [ 1, which requires constant time independent of =. When repeating
the measurements after optimization, the backends indeed take constant time: Sou�é requires
approximately 2<B , Ascent roughly 0.05<B , and Viatra 70<B for evaluating the optimized program.
This illustrates how our multi-level Datalog IR enables optimizations that signi�cantly improve the
running times of Datalog programs. Future work can develop many more interesting optimizations
based on the foundations developed in this paper.

6 Related work
We propose a novel extensible, typed multi-level IR for Datalog to build a �exible compiler frame-
work for Datalog. This is in stark contrast to the state of the art, where each Datalog system
provides its own isolated compiler pipeline.

The idea of a multi-level IR was �rst popularized by the LLVM compiler framework [Lattner et al.
2021]. Originally, LLVM was designed with a single IR in mind to represent and type check code
language-independently [Lattner and Adve 2004]. There are more than 40 LLVM IR extensions
(called dialects), including extensions for basic arithmetic, vectors, tensors, higher-order functions,
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and asynchronous computations.4 In general, a multi-level intermediate representation (IR) is
de�ned by distinctive design principles [Lattner et al. 2021] which we follow closely:
(1) Little Builtin, Everything Customizable. The IR is based on a minimal number of fundamen-

tal concepts to facilitate customization. These abstractions are easy to extend and, in our
framework, include modules, module entries, atoms, terms, and types.

(2) Region-Based Data and Control Structures. To maintain low compiler complexity, the IR supports
data and control structures that are transformed into normalized representations. We introduce
such structures in the form of top-level disjunctions, blocks, and pattern matching on algebraic
data.

(3) Progressivity. The compiler framework progressively lowers abstractions to a core IR, supporting
analysis and optimizations at each level. Our design achieves this by building IR extensions on
top of a core Datalog IR.

(4) Declaration and Validation. Transformations should be expressed as rewriting rules, separate
from the IR nodes. The framework must validate the generated code after each transformation.
We enable rewritings by exploiting the visitor pattern and type the generated IR code after
each transformation.

Below, we �rst discuss related work on extensible IRs, followed by work on type systems and
compilers for Datalog.

Extensible IRs. There is no universally accepted de�nition for an extensible intermediate repre-
sentation in the literature. Nonetheless, various approaches describe mechanisms to extend their
intermediate representation with new features. However, none of these approaches implement
progressive lowerings and declarative transformations, which are essential for a multi-level IR.

Graal IR [Duboscq et al. 2013] is an intermediate representation for a Java just-in-time compiler.
New IR nodes are de�ned declaratively and usually remain during compilation. However, nodes
can choose to de�ne a �xed rewriting in terms of other nodes. This is in contrast to the design of
multi-level IRs, where IR nodes are progressively lowered in multiple passes to a core IR. Lowerings
in a multi-level IR are more �exible and enable di�erent transformations for the same node type.
Thorin [Leißa et al. 2015] is an extensible, higher-order IR based on a typed lambda calculus

that enables optimizations at higher levels of abstraction. Users can declare new operations, called
axioms, which can be opaque functions, type operators, or any other entity with a type. Multiple
axioms are grouped into a dialect. Optimizations operate on multiple axioms, potentially across
multiple dialects, to ultimately generate LLVM IR code. In contrast to a multi-level IR, Thorin lacks
progressive lowering to express one dialect in terms of another.

INSPIRE [Jordan et al. 2013] is a uni�ed, high-level, parallel intermediate representation designed
for parallel applications. To accommodate changing requirements over time, INSPIRE emphasizes
extensibility. In particular, the IR consists of a �xed set of core constructs that provide abstractions
for types and operators, which are used to de�ne extensions to the IR. Extensions can be newly
de�ned or derived from existing constructs by composing previously de�ned elements. In contrast, a
multi-level IR supports progressive lowering, where an extension is lowered and optimized through
multiple passes to a core IR. Additionally, we decouple the lowerings from the IR node de�nitions,
allowing for alternative lowerings for the same IR nodes.

Type Systems for Datalog. Only few studies on the typing of Datalog exist in the literature,
and none of them considers a modularly extensible Datalog IR.
Formulog [Bembenek et al. 2020] extends Datalog by incorporating a �rst-order functional

language and built-in support for SMT formulas. The language is statically typed and its type
4https://mlir.llvm.org/docs/Dialects/
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system ensures type safety for Datalog: types are compatible and variables are bound before they
are read. Formulog achieves safe variable handling by separating expressions from Datalog variables
during typing. Datalog variables are checked using a �ow-sensitive typing judgment for Datalog
terms. However, if a term is not a variable, Formulog handles the term as an expression, which may
only read but never bind variables. Moreover, Formulog speci�es strictness points (e.g., in negative
calls) by requiring the typing context to be unchanged. Both techniques work well for their setup,
but precludes many IR extensions we have implemented.
For example, consider a tuple IR extension that allows equations such as (- ,. ) = (1, 2). Since

(- ,. ) is not a variable, Formulog would handle it as an expression that may not bind variables.
Similarly, a block that binds variables within a term 3 + {� = 1,⌫ = 2,⌫ ��} is not supported by
Formulog, because the outermost addition term moves the type checker into expression mode,
which may not bind the variables� and ⌫. Another problematic extension is atom negation, because
not(not% (- ,. )) should bind variables, but Formulog’s type system would reject this program. We
also could not support the demand IR extension in Formulog, because Formulog rewrites ? (41, 42)
to ? (- ,. ),- = 41,. = 42, which is only valid when neither - nor . is demanded by ? .

The fundamental issue is that there is no way to recover from a strictness point in Formulog: Once
the type system shifts to expression mode, it stays there. Our solution is to forgo the distinction
between terms and expressions, but to include a polarity �ag instead. A term typed under negative
polarity corresponds to Formulog’s expression typing, whereas a positive polarity corresponds to
Formulog’s term typing. This makes our type system more uniform and allows us to switch from
one mode to the other. For example, the IR extension for blocks can explicitly check the contained
atoms in positive mode and the negation extension can �ip the polarity.

While we and Formulog associate atomic types with terms (e.g., int, bool, set of int), other Datalog
type systems have focused on identifying constraints between relations. For example, LogicBlox
features a type system that can encode inclusion constraints on tuples, such as: if parent(X,Y) then
person(X) and person(Y) [Zook et al. 2009]. This is useful for ensuring referential integrity in database
systems, an issue orthogonal to the type-safety property we are after.

In the same vein, de Moor et al. [2008] use typing inference for optimizing Datalog programs. The
idea is to trace which elements an (intermediary) relation can contain and to use this information for
optimizations. In particular, a type error occurs when a relation is empty and the atom is known to
fail. Follow-up work uses more complex type hierarchies that not only allow for subtyping checks,
but also for disjointness and equality tests [Schäfer and de Moor 2010]. Datalog programmers can
annotate such relationships in the program and type inference tracks corresponding dependencies
between tuple elements. This line of work is quite di�erent from ours in that it does not ensure type
safety because variable bindings are imprecise, while we do not try to use typing for optimizations.
Indeed, to integrate their type inference into our compiler framework, we would model it as a
compiler pass rather than incorporating it into our type system.

Frontends/Backends. We provide a uni�ed platform for di�erent Datalog frontends and back-
ends. Frontends can target our Datalog IR and we can compile the IR to existing backends.
Sou�é [Scholz et al. 2015] provides a Datalog dialect with an e�cient Datalog solver. Sou�é

provides a static type system for its Datalog dialect and a separate analysis to ensure range
restrictedness. Nevertheless, Sou�é does not provide any formalization of the type system. Our
Datalog IR veri�es type compatibility and range restrictedness in a single, extensible type system.
Sou�é allows disjunctions within rules, that are lowered to multiple rules. We have integrated
Sou�é as a Datalog backend and frontend in our system. That way, programs that target our Sou�é
backend can pro�t from optimizations we implement for various IR levels. For example, we provide
specialized optimizations for boolean, sets or demanded parameters.
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Functional IncA [Pacak and Erdweg 2022] is a statically typed, functional language with �xpoint
computations that compiles to Datalog. It employs defunctionalization to encode �rst-class sets
and encodes the control-�ow of a functional program using the demand transformation [Tekle and
Liu 2010]. Based on Functional IncA’s defunctionalization approach, we designed an IR extension
for �rst-class sets in Datalog. Instead of explicitly computing the demand transformation, we track
demand through the type system and transform the program in a lowering step. As shown in our
evaluation, our design is �exible enough to implement Functional IncA on top of our multi-level IR.
In contrast to the monolithic compiler of Functional IncA, the re-implementation reuses many IR
extensions which allows the compiler to reduce the compilation semantics complexity drastically.
Dedalus [Alvaro et al. 2010] is a language for distributed systems that reduces to Datalog with

negation and aggregation. In these distributed system the state evolves with the execution. Dedalus
introduces a notion of time to Datalog to reason about state. Our Datalog IR design can represent a
similar notion of time in Datalog using the impure IR. Using impurity, we can thread a timestamp
throughout a Datalog program that increases each time a change is made.
Egglog [Zhang et al. 2023] combines statically typed Datalog with equality saturation. The

frontend language is parsed, typed, compiled and then executed with a custom solver. We support
multiple frontends and backends for our multi-level IR and type check at each level. Egglog is a
potentially interesting frontend and backend for our framework.

QL [Avgustinov et al. 2016] is an object-oriented language that is executed by an e�cient Datalog-
like solver. Since the solver speci�c details of QL are closed source, it is hard to assess if QL can be
used as a possible backend. However, our multi-level IR should be expressible and �exible enough
to implement QL’s frontend language, as our object-oriented case study shows.
Flix [Madsen and Lhoták 2020; Madsen et al. 2016] is a functional-�rst programming language

that incorporates Datalog programs as �rst-class values. Datalog expressions undergo type checking
to ensure consistent types for predicate symbols and their terms throughout a Flix program, but the
type system does not ensure range restrictedness. Given its features, Flix presents an interesting
option as a frontend language for our multi-level IR. We envision the ability to compile and execute
the Datalog portion of Flix to our multi-level IR to leverage the bene�ts of di�erent backends.

DDLog [Ryzhyk and Budiu 2019] is a dialect of Datalog featuring a custom backend for automated
incremental computations. Its dialect supports relations, variables, and functions. It includes a type
system with Booleans, integers, bit-vectors, strings and tuples, but no recursive types are allowed.
We support an extensible multi-level IR with type checking and we guarantee range restrictedness
at each level. Our Datalog IR supports recursive data de�nitions in a dedicated IR extension.

Besides these combined frontend/backend solutions, there are multiple Datalog engines, that are
interesting to support as Datalog backends in our IR. Viatra [Varró et al. 2016] is the incremental
Datalog solver used by IncA, which we already support as a target. Ascent [Sahebolamri et al.
2022] is a macro-based Datalog solver written in Rust, that we also support as an additional
backend. Hydro�ow [Samuel 2021] is primarily a low-level compilation target for declarative cloud
programming languages. It supports creating instances from Datalog code and therefore might
become an interesting backend target in the future.

7 Conclusion
We designed the �rst compiler framework for Datalog. While existing Datalog systems are com-
pletely isolated, our compiler framework enables programs written in di�erent Datalog dialects
to interoperate at the IR level. It also allows optimizations to be formulated against the IR, which
makes them reusable across Datalog compilers.

The compiler framework is based on a typed multi-level Datalog IR, which is the key conceptual
contribution of this paper. IR extensions not only introduce new IR nodes and types, they also
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extend the type system and (optionally) provide a type-safe lowering. We carefully designed an
extensible type system for the Datalog IR that is bidrectional, �ow-sensitive, bipolar, and uses a
three-valued typing context. This type system is precise enough to ensure valid variable bindings
and �exible enough to support a wide range of extensions. Indeed, most of our IR extensions
interact with variable binding and require the full expressiveness of our type system.

To validate our compiler framework, we implemented 4 compiler frontends and 3 compiler back-
ends. These use 16 IR extensions that we developed, including extensions arithmetic, Booleans, and
disjunctions. But our compiler framework really shines in supporting modular IR extensions whose
precise static semantics has never been captured before, such as the IR extensions for demanded
parameters and impure atoms. In future work, we will connect more compiler frontends and back-
ends to the compiler framework and explore new IR extensions to support them. Additionally, we
will explore optimizations for the core Datalog IR and its extensions systematically.
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