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Interactive Debugging of Datalog Programs
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Datalog is used for complex programming tasks nowadays, consisting of numerous inter-dependent predicates.

But Datalog lacks interactive debugging techniques that support the stepwise execution and inspection of the

execution state. In this paper, we propose interactive debugging of Datalog programs following a top-down

evaluation strategy called recursive query/subquery. While the recursive query/subquery approach is well-

known in the literature, we are the first to provide a complete programming-language semantics based on it.

Specifically, we develop the first small-step operational semantics for top-down Datalog, where subqueries

occur as nested intermediate terms. The small-step semantics forms the basis of step-into interactions in

the debugger. Moreover, we show how step-over interactions can be realized efficiently based on a hybrid

Datalog semantics that adds a bottom-up database to our top-down operational semantics. We implemented a

debugger for core Datalog following these semantics and explain how to adopt it for debugging the frontend

languages of Soufflé and IncA. Our evaluation shows that our hybrid Datalog semantics can be used to debug

real-world Datalog programs with realistic workloads.
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1 INTRODUCTION
Datalog is a logic programming language that was invented in the 1980s as a recursive query

language for databases [Maier et al. 2018]. However, this is not how Datalog is being used nowadays.

In the last 20 years or so, it has become increasingly popular to use Datalog as a programming

language to solve all kinds of problems, from program analysis [Bravenboer and Smaragdakis

2009; Madsen et al. 2016; Szabó et al. 2021] to distributed computing [Abiteboul et al. 2005] and

network monitoring [Alvaro et al. 2010, 2011]. Usages of Datalog usually have two things in

common. First, they process graph-structured data of considerable size, which is well supported

by Datalog’s fixpoint semantics. Second, they involve complex Datalog programs, consisting of

many inter-dependent rules. For example, even the simplest analysis from the Doop framework for

Java bytecode consists of 560 lines of Datalog code that query 32 relations from the database and

compute 78 inter-dependent derived relations [Bravenboer and Smaragdakis 2009]. Sophisticated

Doop analyses are an order of magnitude larger still.

Unfortunately, development tools for Datalog have not been able to keep up with the growing

size and complexity of Datalog programs. Specifically, there is no interactive debugging support

available for Datalog to date. Interactive debuggers assist developers in program understanding
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and bug finding by executing a program stepwise and exposing the program’s execution state to

the developer after each step. Interactive debugging support for Datalog is necessary to support

modern Datalog programming. Specifically, there is an increasing number of Datalog programs

that involve intricate “control flow” to capture the user’s mental model of what happens when.

A debugger should enable users to follow the intended control flow of such Datalog programs to

trace the program’s behavior, as in the following scenarios:

• Type checkers written in Datalog [Bembenek et al. 2020; Pacak et al. 2020]. Type checkers

traverse the syntax tree and the debugger should retain that traversal order. Users need to be

able to see the typing context during execution, as well as the set of candidate types in case of

local ambiguity.

• Symbolic evaluators [Bembenek et al. 2020] and abstract interpreters [Pacak and Erdweg 2022].

Evaluators and interpreters execute (sub-)programs according to the evaluation order of the

interpreted language. The debugger must retain that order. The execution state contains the

current bindings of variables to values, which are relevant when debugging such interpreters.

• Flow-sensitive data-flow analysis as found in IncA [Szabó et al. 2018, 2021] and Doop [Braven-

boer and Smaragdakis 2009]. A data-flow analysis propagates data-flow facts along the CFG of

the analyzed program, either in forward or backward direction. A forward analysis traverses

the CFG from function/main entry to function/main exit, a backward analysis is the other way

around. The debugger must present the execution in that same order. What is more, data-flow

analyses compute a fixpoint and the debugger must enable inspection of the execution state

during each fixpoint iteration, not just the final result.

There are existing debugging tools for Datalog, but they treat Datalog as a query language for

databases. In particular, existing debugging techniques for Datalog use post-mortem debugging and

are based on provenance: They explain why a tuple was derived by computing the tuple’s derivation

tree. For example, consider the standard Datalog program that finds the paths of a directed graph:

edge(1, 2). edge(2, 3). edge(3, 1).
path(𝑋,𝑌 ) :− edge(𝑋,𝑌 ). // rule R1

path(𝑋,𝑌 ) :− edge(𝑋,𝑍 ), path(𝑍,𝑌 ). // rule R2

Given tuple path(3, 3), provenance-based approaches will give the following derivation tree as

explanation of the derivation of the tuple:

edge(3, 1)
edge(1, 2)

edge(2, 3)
R1

path(2, 3)
R2

path(1, 3)
R2

path(3, 3)

Such visualizations can be useful in understanding a Datalog program, in particular for debugging

data-driven Datalog programs without control flow. But why does provenance-based debugging

not enable adequate debugging of the examples above? Provenance-based debugging does not

follow the program’s execution trace, but instead follows data-dependencies by using derivation

trees. This induces the following shortcomings:

(1) The derivation tree only shows why a tuple was derived and does not show the execution state

when a specific tuple was derived.

(2) Provenance-based debugging can only answer questions about ground tuples. For example, we

cannot ask path(3, 𝑌 ): what paths start at node 3 and why?
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(3) The derivation tree shows a single derivation, but does not allow exploration of alternative

(sub-)derivations that succeeded, nor of alternative (sub-)derivations that failed. That is, the

derivation tree does not represent the execution trace of a Datalog program.

This paper develops interactive debugging for Datalog (with negation and constructors) that

allows users to step through a Datalog execution and explore the intermediate execution state.

To do so, we must first define what an execution trace for Datalog is. We argue that the standard

bottom-up semantics of Datalog is ill-suited for debugging, since it results in a trace that follows the

data rather than the structure of the program. Instead, we base our debugger on Datalog’s top-down

semantics, which starts with a query and steps in and out of rules until all query results have

been found. In the literature, this semantics is known as the query/subquery approach, for which

iterative and recursive algorithms exist [Vieille 1986]. To the best of our knowledge, we present

the first small-step formulation of Datalog’s top-down semantics, which forms the foundation of

stepwise execution in our debugger.

One disadvantage of using the top-down semantics for debugging is its inefficiency in prac-

tice [Ullman 1989]. This is not much of an issue for individual step-into interactions, but when a

user triggers a step-over or resume interaction, the debugger must run many steps in sequence

and the inefficiency becomes a show-stopper. For example, consider a taint analysis implemented

in Datalog that constructs a data-flow graph and then propagates taint along its edges. When

debugging the taint analysis, a user may want to step over the data-flow graph construction and

inspect the taint propagation only. Indeed, one of our experiments confirmed that the top-down

semantics is too inefficient to evaluate even a simple Doop points-to analysis on a medium-sized

Java codebase (timeout after a 10 minutes). This is why almost all Datalog solvers in practice rely on

the bottom-up semantics, which can run the same analysis in less than 30 seconds. Technically, the

bottom-up semantics is more efficient because it can compute n-ary joins for subqueries, whereas

the top-down semantics must execute them in order and perform many binary joins instead. How

can we make our debugger scale to real-world Datalog programs nonetheless?

We propose a novel hybrid debugging semantics for Datalog that mixes top-down and bottom-up

evaluation. While stepping through the program trace, the user follows the top-down reduction

steps. But, when stepping over a predicate call, we rely on the bottom-up semantics to compute the

result of the skipped code. In fact, we can run the bottom-up semantics once prior to debugging
and use the resulting database to provide the results for any number of stepped-over predicates.

We further show how this approach can be extended to support stepping over recursive predicate

calls, which may only produce a partial result in accordance with the current recursion depth. To

this end, we exploit an incremental bottom-up semantics to temporarily “forget” tuples that will

only be derived in later iterations.

We implemented two interactive Datalog debuggers, respectively based on the top-down and

hybrid semantics. We evaluate the step-into and step-over performance of the debuggers on the

path program and on an inter-procedural Java points-to analysis from Doop for realistic debugging

scenarios. Our measurements show that the step-into performance is good, but the step-over

interaction is a bottleneck in the top-down-only semantics. But using our hybrid semantics, the

Datalog debugger scales to realistic workloads. We make the following contributions:

• We present the first formulation of a small-step operational semantics for Datalog. Our seman-

tics corresponds to the well-known recursive query/subquery algorithm (Section 3).

• We present a novel hybrid semantics for Datalog that mixes top-down and bottom-up evaluation.

A debugger can use top-down reductions for step-into and bottom-up results for step-over

interactions (Section 4).
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• We extend the hybrid semantics to allow step-over of recursive predicate calls through incre-

mental maintenance of a logical relation between the two semantics (Section 5).

• We have implemented a debugger for core Datalog and show it can be used to debug languages

that compile to core Datalog (Section 6).

• We evaluate the performance of our debugging approach on an inter-procedural points-to

analysis on realistic workloads (Section 7).

2 WHYWE NEED INTERACTIVE DEBUGGING FOR DATALOG
This paper proposes an interactive debugging approach for Datalog programs, where users can

explore and guide the execution of Datalog code. Our goal is to provide a debugger interface for

Datalog that mirrors debuggers from imperative programming languages, featuring step into, step

over, step out, resume, and breakpoints. In contrast, today’s state-of-the-art Datalog debuggers

support post-mortem debugging, where users can inspect derivation trees after tuples have been

derived. This technique is known as provenance-based debugging. In this section, we discuss why

provenance-based debugging is not sufficient for Datalog and why we need interactive debugging

support for Datalog instead.

Why not to use derivation trees. Consider an encoding of type checking in Datalog as described
by Pacak et al. [2020]. They encode the typing relation with two Datalog relations:

typeOf ⊆ Exp × Type

lookup ⊆ Exp × Name × Type

Relation typeOf assigns types to expressions, but does not carry a typing context. Instead, typeOf
relies on lookup to resolve variable references, and lookup proceeds in reverse environment-passing

style: it starts at the reference and walks up the tree until it finds a corresponding declaration using

the auxiliary relation parent between AST nodes. This avoids the construction of typing contexts

at Datalog run time, which has performance benefits [Pacak et al. 2020].

We consider a buggy Datalog program consisting of the rules for typeOf shown below:

typeOf(𝑒, T ) :− var(𝑒, 𝑥), lookup(𝑒, 𝑥, T ).
typeOf(𝑒, Bool) :− bool(𝑒, _).
typeOf(𝑒, Nat) :− num(𝑒, _).
typeOf(𝑒, Nat) :− add(𝑒, 𝑒1, 𝑒2), typeOf(𝑒1, Nat), typeOf(𝑒2, Nat).
typeOf(𝑒, T → T ′) :− lam(𝑒, 𝑥, T , 𝑏), typeOf(𝑏, T ′).
typeOf(𝑒, T ′) :− app(𝑒, 𝑒1, 𝑒2), typeOf(𝑒1, T → T ′), typeOf(𝑒2, Nat).

The relations var, bool, num, add, lam, and app are extensional relations encoding the input program.

Note that this Datalog program constructs and destructs data in the form of types such as Nat,
Bool and function types 𝑇 → 𝑇 . This is unproblematic as long as the constructed data is bound by

extensional relations. We omit the encoding of the lookup relation for brevity.

We injected a bug into the typing rules above and will reveal it shortly. But first, consider the

following term, which is accepted by the above rules even though it is not well-typed:

𝜆𝑓 : Bool → Nat. 𝜆𝑔 : Nat → Nat. 𝜆𝑥 : Nat. 𝑔 ((𝑓 𝑥) + 1)

We can try to debug our Datalog program using provenance-based debugging, which allows us to

inspect the derivation tree. We need to inspect each node until we find an invalid derivation step,

which indicates a buggy Datalog rule. We encourage the reader to try to find the buggy Datalog

rule using the derivation tree before reading further.
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lookup(𝜆𝑔 : N → N. . . . , 𝑔, N → N)
lookup(𝜆𝑥 : N. . . . , 𝑔, N → N)
lookup(𝑔 ((𝑓 𝑥) + 1), 𝑔, N → N)

lookup(𝑔,𝑔, N → N)
typeOf(𝑔, N → N)

lookup(𝜆𝑓 : B → N. . . . , 𝑓 , B → N)
lookup(𝜆𝑔 : N → N. . . . , 𝑓 , B → N)

lookup(𝜆𝑥 : N. . . . , 𝑓 , B → N)
lookup(𝑔 ((𝑓 𝑥) + 1), 𝑓 , B → N)
lookup((𝑓 𝑥) + 1, 𝑓 , B → N)

lookup(𝑓 𝑥, 𝑓 , B → N)
lookup(𝑓 , 𝑓 , B → N)
typeOf(𝑓 , B → N)

lookup(𝜆𝑥 : N. . . . , 𝑥, N)
lookup(𝑔 ((𝑓 𝑥) + 1), 𝑥, N)
lookup((𝑓 𝑥) + 1, 𝑥, N)

lookup(𝑓 𝑥, 𝑥, N)
lookup(𝑥, 𝑥, N)
typeOf(𝑥, N)

typeOf(𝑓 𝑥, N) typeOf(1, N)
typeOf((𝑓 𝑥) + 1, N)

typeOf(𝑔 ((𝑓 𝑥) + 1), N)
typeOf(𝜆𝑥 : N. 𝑔 ((𝑓 𝑥) + 1), N → N)

typeOf(𝜆𝑔 : N → N. 𝜆𝑥 : N. 𝑔 ((𝑓 𝑥) + 1), (N → N) → N → N)
typeOf(𝜆𝑓 : B → N. 𝜆𝑔 : N → N. 𝜆𝑥 : N. 𝑔 ((𝑓 𝑥) + 1), (B → N) → (N → N) → N → N)

We abbreviate the derivation tree. For example, we do not show the queries of extensional relations

such as lam and app. We also abbreviate Nat with N and Bool with B. We highlight some statistics

about the complete tree:

typeOf derivations = 10

lookup derivations = 16

extensional derivations = 29

Even for this small expression, the derivation tree is quite large and unwieldy containing 55 nodes.

This makes debugging Datalog programs using provenance-based approaches unwieldy. That is,

navigating and inspecting derivation trees is clunky.

The buggy Datalog rule is the one that handles typing function applications. The rule requires the

argument to have type Nat, independent of the function’s parameter type. Using provenance-based

debugging, it can be very difficult to find such invalid rules. In particular, considering that Datalog

programs are usually applied to large amounts of data (e.g., analyzing the entire JDK), yielding

derivation trees that are many orders of magnitude larger. But this is not the only reason we need

interactive Datalog debugging.

Our buggy Datalog rule for applications not only permits ill-typed terms, it also prohibits well-

typed ones. Consider the following well-typed program 𝑝 , for which typeOf fails to provide a

derivation tree:

𝑝 = (𝜆𝑓 : Nat → Nat. 𝜆𝑦 : Nat. 𝑓 𝑦) (𝜆𝑥 : Nat.𝑥 + 1)
Again, the problem is that the rule for applications requires function arguments of type Nat, which
is not the case here. Consequentially, there is no derivation tree that provenance-based debugging

could provide to the user.

Why we need interactive debugging. Interactive debugging provides a well-known debugging

interface to Datalog developers: breakpoints, resume, and stepping. Interactive debugging also

allows developers to inspect the internal state of the Datalog program, such as the bindings of logical

variables. The starting point of an interactive debugging session is a query that the developer would

like to be answered, much like a unit test. And it does not matter whether the query is derivable or

not: The user observes the progress of the Datalog solver interactively until it completes or fails.

Let’s use interactive debugging on our Datalog typing rules using the same input program 𝑝

from above. To find the bug, we set a breakpoint at the beginning of the application rule because
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we suspect an issue here. We start the session given the query typeOf(𝑝,𝑇 ). The first breakpoint
we reach is for the outermost application with the following bindings:

𝑒1 ↦→ 𝜆𝑓 : Nat → Nat. 𝜆𝑦 : Nat. 𝑓 𝑦 𝑒2 ↦→ 𝜆𝑥 : Nat. 𝑥 + 1

We resume the computation and we reach the breakpoint again for the innermost application 𝑓 𝑦.

We can step over the first typeOf atom or inspect its derivation using step into. After this atom,

we obtain the bindings:

𝑒1 ↦→ 𝑓 𝑒2 ↦→ 𝑦 𝑇 ↦→ Nat 𝑇 ′ ↦→ Nat

We can step into the second typeOf call to observe how lookup validates that variable 𝑦 indeed

has type Nat. Since all atoms of the application succeeded, we obtain a typeOf tuple for 𝑓 𝑦. We

step out until we reach the rule processing the outermost application again, yielding the bindings:

𝑒1 ↦→ 𝜆𝑓 : Nat → Nat. 𝜆𝑦 : Nat. 𝑓 𝑦
𝑒2 ↦→ 𝜆𝑥 : Nat. 𝑥 + 1

𝑇 ↦→ Nat
𝑇 ′ ↦→ Nat

We step into the second typeOf call, which yields a query typeOf(𝜆𝑥 : Nat. 𝑥 +1, Nat). By stepping
further, we can observe that none of the typeOf rules can derive this query. In particular, the

rule for lambda abstractions fails because the requested type Nat is not a function type. With this

information, the user can discover the bug in the application rule, which should not have requested

type Nat for arguments unconditionally.

Interactive debugging enables inspecting each step while determining if a tuple is derivable.

In contrast, derivation trees only show the final result. This shows why interactive debugging is

necessary: To manage the complexity of derivations using breakpoints, resume, step over, and step

into. And to trace the logical reasoning, whether it succeeded or failed to derive a tuple.

3 SMALL-STEP OPERATIONAL SEMANTICS FOR TOP-DOWN DATALOG
In this paper, we propose to use top-down evaluation as a debugging semantics for Datalog programs.

The top-down semantics is well-suited for debugging because it starts with a Datalog query issued

by the user. Given a query, the top-down semantics recursively explores the rules of the Datalog

program to satisfy the query and to derive the matching tuples. That is, the top-down semantics is

goal-directed, while the bottom-up semantics is data-driven and populates tables eagerly. Since

both semantics yield the exact same result [Green et al. 2013], the top-down semantics can safely

be used for debugging even for systems that implement the bottom-up semantics.

The basis of our small-step semantics is the standard recursive query/subquery approach (QSQR)

developed by Vieille [1986]. While this approach is well-documented in the literature [Abiteboul

et al. 1995], its original formulation was soon found to be incomplete [Nejdl 1987; Vieille 1987]. The

first complete QSQR semantics that provably finds all derivable tuples was proposed much later

by Madalinska-Bugaj and Nguyen [2008]. Our semantics follows Madalinska-Bugaj and Nguyen

and, in particular, their Remark 3.2 explaining that active queries can be maintained in a call stack.

In this section, we present the first small-step top-down Datalog semantics. Prior top-down

Datalog semantics are ill-suited for debugging for three reasons. First, existing QSQR algorithms

apply rules in a single big step, rather than stepping through their bodies. Second, they apply many

rules simultaneously to compute a complete predicate, rather than considering one rule at a time

to trace a predicate’s growth. Third, they are presented as pseudo code that leaves many technical

details implicit, such as how to modify tables using relational algebra. In contrast, we reformulate

QSQR as a small-step operational semantics that makes all details explicit. This semantics will not
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(Datalog programs) 𝐷 ::= 𝑟, 𝑓

(rules) 𝑟 ::= 𝑝 (𝑋 ) :− 𝑎.

(atoms) 𝑎 ::= 𝑝𝑠 (𝑡) | edb 𝑝𝑠 (𝑡) | 𝑡 = 𝑡 | 𝑡 ≠ 𝑡

(signs) 𝑠 ::= + | −
(terms) 𝑡 ::= 𝑐 | 𝑋
(facts) 𝑓 ::= 𝑝 (𝑐).
(constants) 𝑐

(variables) 𝑋

Fig. 1. Abstract syntax of Datalog’s surface language.

(value tables) 𝑣 ::= table(𝑋,𝑇 )
(tuples) 𝑇 ::= 𝑐

(rules) 𝑟 ::= . . . | 𝑣
(atoms) 𝑎 ::= . . . | 𝑄
(queries) 𝑄 ::= sq(𝑝𝑠 (𝑡), 𝑣, 𝑣, 𝑣, 𝑟 ∨ . . . ∨ 𝑟 ) | 𝑣𝑠

Fig. 2. Abstract syntax of Datalog’s intermediate terms.

only serve as the basis for our debugger, but represents an important semantic artifact that will

help substantiate programming-language research on Datalog.

3.1 Datalog Abstract Syntax
Beforewe discuss the small-step operational semantics, we introduce the abstract syntax of Datalog’s

surface language formally in Figure 1. A Datalog program consists of a collection of Datalog rules 𝑟

describing the intensional database (IDB) and collection of facts 𝑓 such as edge(1, 2). describing
the extensional database (EDB). We assume that the EDB is finite. A rule 𝑝 (𝑋 ) :− 𝑎. consists of a

rule head 𝑝 (𝑋 ) and a rule body 𝑎. The rule head 𝑝 (𝑋 ) names the predicate the rule belongs to and

declares columns, whose bindings will determine the derived tuples. The rule body is a sequence of

atoms. An atom is either an (intensional) predicate call 𝑝𝑠 (𝑡), extensional predicate call edb 𝑝𝑠 (𝑡),
an equality constraint 𝑡 = 𝑡 ′, or an inequality constraint 𝑡 ≠ 𝑡 ′. We consider Datalog with stratified

negation in this paper, which is why predicate calls have sign annotations 𝑠: A positive sign (+)
indicates a regular predicate call, whereas a negative sign (−) indicates a negated call. Terms that

occur inside atoms are either a constant value or a variable.

Note that a rule head only ranges over columns and not constants. Additionally, we only allow

linear patterns in rule heads (no duplicate variable names) and assume rules belonging to the same

predicate use the same column names. We make these assumptions without loss of generality as

we can easily normalize arbitrary rules as the following example illustrates:

𝑝 (𝑋, 1) :− 𝑎1. 𝑝 (𝑋,𝑌 ) :− 𝑎1, 𝑌 = 1.

𝑝 (𝑋,𝐴) :− 𝑎2. → 𝑝 (𝑋,𝑌 ) :− 𝑎2, 𝑌 = 𝐴.

𝑝 (𝑋,𝑋 ) :− 𝑎3 . 𝑝 (𝑋,𝑌 ) :− 𝑎3, 𝑌 = 𝑋 .

The abstract syntax describes the surface language of Datalog. To formalize the small-step

operational semantics of Datalog, we extend the abstract syntax with intermediate terms that only

occur during evaluation and are not available to Datalog programmers. We summarize the required

intermediate terms in Figure 2. First, rules evaluate to value tables 𝑣 , which we add as an alternative

to 𝑟 . A value table table(𝑋,𝑇 ) consists of a list of column names 𝑋 and a sequence of tuples 𝑇 ,
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Reduction Relations:

(rule reduction) 𝑣 ⊢ 𝑟 →𝑅 𝑟 ⊣ 𝑣
(atom reduction) 𝑣 ⊢ 𝑎 →𝐴 𝑄

(query reduction) 𝑄 →𝑄 𝑄

Global Information:

(extensional database) EDB ∈ 𝑝 → 𝑣

(intensional database) IDB ∈ 𝑝 → 𝑣

(active queries) Γ ∈ 𝑝𝛼 → 𝑣

Fig. 3. Reduction relations for top-down Datalog and the global state they interact with.

each of which is a sequence of constants. For readability, we usually denote the content of a table

as a set of actual tuples, like {(1, 2), (2, 3)}. A table is only well-formed if the column names are

mutually different and the number of columns matches the arity of all contained tuples. Note that

table(𝑋, ∅) represents the empty table for any columns 𝑋 , whereas table(𝜖, {()}) represents the
unit table: a table without columns but with a single row, namely the empty tuple. The empty table

is an absorbing element for natural joins and represents a failing computation. In contrast, the unit

table is the neutral element for natural joins, which we use to represent computations that do not

add bindings to the current environment:

table(𝑋, ∅) ⊲⊳ 𝑣 = table(𝑋, ∅) = 𝑣 ⊲⊳ table(𝑋, ∅)
table(𝜖, {()}) ⊲⊳ 𝑣 = 𝑣 = 𝑣 ⊲⊳ table(𝜖, {()})

The most interesting intermediate term is the one for subqueries. Subqueries 𝑄 occur when a

predicate call 𝑝𝑠 (𝑡) is reduced, which spawns a new subquery. Following the recursive query/-

subquery approach QSQR, a subquery runs until it reaches a fixpoint. This may require multiple

fixpoint iterations, which is why the subquery must manage quite a bit of auxiliary state. Specifically,

a subquery sq(𝑝𝑠 (𝑡), 𝑣𝑎, 𝑣𝑟 , 𝑣sup, 𝑟1 ∨ . . . ∨ 𝑟𝑛) consists of five components:

(1) The original predicate call 𝑝𝑠 (𝑡) to compute the bindings of free variables in 𝑡 once the subquery

reaches a fixpoint and terminates,

(2) the value table 𝑣𝑎 that captures the arguments of the subquery,

(3) the subquery result 𝑣𝑟 for the rules already evaluated,

(4) the supplementary table 𝑣sup for the intermediate result of currently evaluating rule, and

(5) the current and remaining rules 𝑟1 ∨ . . . ∨ 𝑟𝑛 .

The role of each component will become clearer when we discuss the semantics of subqueries.

Eventually, a subquery evaluates to a value table 𝑣𝑠 that carries the sign of the original predicate

call. Note that all value tables are implicitly positive whenever we omit the sign annotation.

3.2 Reduction Relations and Global State
We model the small-step operational semantics of top-down Datalog through three mutually

recursive reduction relations. Figure 3 shows the signatures of the three relations. Rule reduction

𝑣sup ⊢ 𝑟 →𝑅 𝑟 ′ ⊣ 𝑣 ′sup of a rule 𝑟 reduces and eventually eliminates atoms from the rule body. That

is, we rewrite rules until all atoms are satisfied and consumed. Rule reduction happens under a

supplementary table 𝑣sup and produces a new supplementary table 𝑣 ′sup . Supplementary tables are a

standard element of top-down Datalog evaluation and roughly correspond to environments in other

programming-language semantics. For example, a rule edge(𝑋,𝑌 ) :−𝑋 = 1, 𝑌 = 2. may start with a

unit supplementary table, then reduce to edge(𝑋,𝑌 ) :−𝑌 = 2.with a supplementary table(𝑋, {(1)}),
then to edge(𝑋,𝑌 ) :− . with table(𝑋,𝑌, {(1, 2)}). In contrast, to environments, the supplementary

table may capture many possible values for a column and evaluation may filter entries that do not

satisfy the rule body. For example, the evaluation of rule edge(𝑋,𝑌 ) :− 𝑋 = 1, 𝑌 = 2. with initial

supplementary table(𝑌, {(2), (3), (4)}) lists three alternative values for 𝑌 . The rule then reduces
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to edge(𝑋,𝑌 ) :− 𝑌 = 2. with table(𝑋,𝑌, {(1, 2), (1, 3), (1, 4)}), and then to edge(𝑋,𝑌 ) :− . with

table(𝑋,𝑌, {(1, 2)}) by filtering rows that do not satisfy 𝑌 = 2.

Rule reduction depends on atom reduction 𝑣sup ⊢ 𝑎 →𝐴 𝑄 of 𝑎 under the supplementary table

𝑣sup. An atom either reduces to an updated supplementary table or produces a new subquery. For

subqueries, query reduction 𝑄 →𝑄 𝑄 ′
is responsible for their execution and fixpoint iteration.

Our semantics uses three pieces of global state, which is shared between all reduction rules and

also shown in Figure 3. We decided to model this state outside the intermediate terms to obtain a

more concise semantics. Alternatively, the global state could be threaded in standard state-passing

style. Function EDB collects all pre-defined facts 𝑓 of the current Datalog program and represents

the extensional database. For each extensional predicate 𝑝 , EDB maps 𝑝 to a value table 𝑣 . Function

IDB collects all tuples derived during the execution of a Datalog program and represents the

intensional database. Initially, IDB maps all predicates to the empty table with columns matching

the predicate’s signature. During execution, IDB grows monotonically until we reach a fixpoint.

While EDB and IDB are common to all Datalog semantics, our top-down semantics also must

track the active queries Γ. Essentially, Γ maps predicates to value tables that represent active

argument values. The idea is to skip active arguments in recursive calls to prevent infinite re-

cursion, while the fixpoint loop still ensures all derivable tuples are found. Technically, Γ must

distinguish between different calls based on which parameters are bound at the call site, since the

corresponding value tables have different columns. We employ adornments to distinguish bound

columns 𝑏 from free columns 𝑓 as is standard for top-down Datalog, but also known from the

magic set transformation [Beeri and Ramakrishnan 1991]. For example, the call path(1, 3) binds
two parameters through adornment 𝑏𝑏 (bound and bound), but the adornment of call path(𝐴, 𝐵)
depends on the boundedness of 𝐴 and 𝐵 at the call site. Given a predicate 𝑝 and an adornment 𝛼

for each parameter of 𝑝 , function Γ maps 𝑝𝛼 to a stack of currently active query arguments.

3.3 Reduction Rules
We now present the reduction rules of the three reduction relations shown in Figure 4.

Rule reduction. There are three reduction rules defining the rule reduction relation: R-Step,

R-Merge, and R-Result. R-Step is a simple congruence rule that reduces the next atom 𝑎 of the

current rule under the current supplementary table 𝑣sup. This way, R-Step iteratively normalizes

the frontmost atom, but it does not change the supplementary table.

Rule R-Merge applies when the first atom of a Datalog rule has been reduced to a value table 𝑣𝑠 .

We remove the value table 𝑣𝑠 from the Datalog rule and merge it into the supplementary table 𝑣sup
using a helper function merge defined as follows:

𝑚𝑒𝑟𝑔𝑒 (𝑣1, 𝑣𝑠2) =
{
𝑣1 ⊲⊳ 𝑣2, if 𝑠 = +
𝑣1 ▷ 𝑣2, if 𝑠 = −

This function combines two value tables based on the sign of the second operand. If the right-hand

value table carries a positive sign (i.e., it stems from a positive predicate call), we merge the tables

using a natural join. This effectively extends the current supplementary table with bindings for

those variables that were free in the call of the predicate. In contrast, if the right-hand value table

stems from a negative predicate call and carries a negative sign, we merge the tables using an

anti-join. An anti-join 𝑣1 ▷ 𝑣2 only retains those rows of 𝑣1 that do not have a match in 𝑣2. In

particular, an anti-join does not add any bindings to the supplementary table, since all Datalog

variables must be bound by positive calls or positive equations.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 248. Publication date: October 2023.



248:10 André Pacak and Sebastian Erdweg

𝑣sup ⊢ 𝑎 →𝐴 𝑄
R-Step

𝑣sup ⊢ 𝑝 (𝑋 ) :− 𝑎, 𝑎𝑠. →𝑅 𝑝 (𝑋 ) :− 𝑄, 𝑎𝑠. ⊣ 𝑣sup

R-Merge

𝑣sup ⊢ 𝑝 (𝑋 ) :− 𝑣𝑠 , 𝑎𝑠 . →𝑅 𝑝 (𝑋 ) :− 𝑎𝑠. ⊣ merge(𝑣sup, 𝑣𝑠 )

R-Result

𝑣sup ⊢ 𝑝 (𝑋 ) :− 𝜖. →𝑅 Π
𝑋
(𝑣sup) ⊣ 𝑣sup

unfree(𝑡, 𝑣sup) unfree(𝑡 ′, 𝑣sup)
A-Eq

𝑣sup ⊢ 𝑡 = 𝑡 ′ →𝐴 𝜎𝑡=𝑡 ′ (𝑣sup)

unfree(𝑡, 𝑣sup) unfree(𝑡 ′, 𝑣sup)
A-Neq

𝑣sup ⊢ 𝑡 ≠ 𝑡 ′ →𝐴 𝜎𝑡≠𝑡 ′ (𝑣sup)

𝑋 ∉ cols(𝑣sup) unfree(𝑡, 𝑣sup)
A-Eq-L

𝑣sup ⊢ 𝑋 = 𝑡 →𝐴 bind (𝑋, 𝑡, 𝑣)

𝑋 ∉ cols(𝑣sup) unfree(𝑡, 𝑣sup)
A-Eq-R

𝑣sup ⊢ 𝑡 = 𝑋 →𝐴 bind (𝑋, 𝑡, 𝑣)

𝑣𝑎 = eval(cols(𝑝), 𝑡, 𝑣sup)
A-EDB

𝑣sup ⊢ edb 𝑝𝑠 (𝑡) →𝐴 𝜌 𝑡/cols (𝑝 ) (EDB(𝑝) ⊲⊳ 𝑣𝑎)𝑠

𝑣𝑎 = eval(cols(𝑝), 𝑡, 𝑣sup) (Γ′, 𝑣 ′𝑎) = pushQuery(Γ, 𝑝, 𝑣𝑎) 𝑣 ′𝑎 not empty
A-Into Γ := Γ′

𝑣sup ⊢ 𝑝𝑠 (𝑡) →𝐴 sq(𝑝𝑠 (𝑡), 𝑣 ′𝑎, table(cols(𝑝), ∅), 𝑣 ′𝑎, rules(𝑝))

𝑣𝑎 = eval(cols(𝑝), 𝑡, 𝑣sup) (Γ′, 𝑣 ′𝑎) = pushQuery(Γ, 𝑝, 𝑣𝑎) 𝑣 ′𝑎 empty
A-Skip

𝑣sup ⊢ 𝑝𝑠 (𝑡) →𝐴 𝜌 𝑡/cols (𝑝 ) (IDB(𝑝) ⊲⊳ 𝑣𝑎)𝑠

𝑄 →𝑄 𝑄 ′
A-Step

𝑣sup ⊢ 𝑄 →𝐴 𝑄 ′

𝑣sup ⊢ 𝑟 →𝑅 𝑟 ′ ⊣ 𝑣 ′sup
Q-Step

sq(𝑝𝑠 (𝑡), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, 𝑟 ∨ 𝑟𝑠) →𝑄 sq(𝑝𝑠 (𝑡), 𝑣𝑞, 𝑣𝑟 , 𝑣 ′sup, 𝑟 ′ ∨ 𝑟𝑠)

Q-Union

sq(𝑝𝑠 (𝑡), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, 𝑣 ∨ 𝑟𝑠) →𝑄 sq(𝑝𝑠 (𝑡), 𝑣𝑞, 𝑣𝑟 ∪ 𝑣, 𝑣𝑞, 𝑟𝑠)

𝑣𝑟 ⊆ IDB(𝑝) (Γ′, 𝑣𝑎) = popQuery(Γ, 𝑝, 𝑣𝑞)
Q-Stable Γ := Γ′

sq(𝑝𝑠 (𝑡), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, 𝜖) →𝑄 𝜌 𝑡/cols (𝑝 ) (IDB(𝑝) ⊲⊳ 𝑣𝑎)𝑠

𝑣𝑟 ⊈ IDB(𝑝) IDB′ = IDB ⊎ 𝑝 ↦→ (IDB(𝑝) ∪ 𝑣𝑟 )
Q-Iterate IDB := IDB′

sq(𝑝𝑠 (𝑡), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, 𝜖) →𝑄 sq(𝑝𝑠 (𝑡), 𝑣𝑞, table(cols(𝑝), ∅), 𝑣𝑞, rules(𝑝))

Fig. 4. Reduction rules for rule reduction, atom reduction, and query reduction.
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At last, when the rule body is empty, R-Result replaces the rule by the value table it produces. We

obtain a rule’s value table by projecting the final supplementary table according to the parameters

in the rule’s head.

Atom reduction. The atom reduction relation handles equalities and predicate calls. The rules

A-Eq and A-Neq handle equality and inequality atoms whenever both operands are unfree. A term

is unfree with respect to a table 𝑣 if the term is a constant 𝑐 or it is a variable 𝑋 and 𝑋 ∈ cols(𝑣).
For unfree terms, A-Eq and A-Neq filter the current supplementary table 𝑣sup according to the

their constraint. This filtered supplementary table later replaces 𝑣sup in the next R-Merge step since

𝑣sup ⊲⊳ 𝜎𝑓 (𝑣sup) = 𝜎𝑓 (𝑣sup) for any 𝑓 . An actual implementation can of course avoid the extra join.

In addition, we define two rules A-Eq-L and A-Eq-R for the equality atomwhen one term is unfree

but the other term is a free variable. These rules bind the free variable in the current supplementary

table using the helper function bind:

bind (𝑋, 𝑡, 𝑣) =
{
𝑣 ⊲⊳ table(𝑋,𝑌, {(𝑐, 𝑐) | 𝑐 ∈ Π𝑌 (𝑣)}), if 𝑋 ∉ cols(𝑣), 𝑡 = 𝑌,𝑌 ∈ cols(𝑣)
𝑣 ⊲⊳ table(𝑋, {(𝑐)}), if 𝑋 ∉ cols(𝑣), 𝑡 = 𝑐

The first case is only triggered if the term is a variable 𝑌 bound by table 𝑣 . Effectively, we extend

table 𝑣 with a new column 𝑋 that is a copy of column 𝑌 . The second case is only triggered if the

term is a constant. In this case, we extend the table 𝑣 with a new column 𝑋 that contains 𝑐 in each

row. Note that A-Eq-R is the same as A-Eq-L but where the right operand is an unbound variable.

The next three rules handle different kinds of predicate calls. Reduction rule A-EDB handles

queries against the extensional database EDB. To this end, we first compute the argument table 𝑣𝑎
of the call using a helper function eval to bind the columns of 𝑝 to the argument values in 𝑡 :

eval(𝑋1, . . . , 𝑋𝑛, 𝑡1, . . . , 𝑡𝑛, 𝑣) = ẽval(𝑋1, 𝑡1, 𝑣) × . . . × ẽval(𝑋𝑛, 𝑡𝑛, 𝑣)

ẽval(𝑋, 𝑡, 𝑣) =
{
table(𝑋, {(𝑐)}), if 𝑡 = 𝑐

𝜌𝑋/𝑌 (Π𝑌 (𝑣)), if 𝑡 = 𝑌

Function eval takes a sequence of columns, a sequence of terms, and a value table. It calls another

helper function ẽval on each column-term pair and builds the Cartesian product of their results.

For a constant 𝑐 , 𝑒𝑣𝑎𝑙 yields a singleton table binding column 𝑋 to constant 𝑐 . For a variable 𝑌 , 𝑒𝑣𝑎𝑙

instead yields a table with one column 𝑋 bound to values of 𝑌 in 𝑣 . With the Cartesian product

of all of these tables in eval, we collect the induced bindings. Note that Π𝑌 (𝑣) is empty if 𝑌 is not

bound in 𝑣 , so that the resulting table may have some or all columns 𝑋1, . . . , 𝑋𝑛 .

Based on the resulting argument table, rule A-EDB can find the matching tuples in EDB using

a natural join, yielding a subset of EDB(𝑝). We then need to rename the columns to match the

argument terms 𝑡 of the predicate call, dropping columns that are constant in 𝑡 . We also super-

impose the sign 𝑠 of the call, which the subsequent R-Merge will take into account to update the

supplementary table accordingly.

Reduction rule A-Into is only applicable if the query produced by 𝑝𝑠 (𝑡) explores new argument

tuples. It is important to track the previously visited argument tuples to ensure termination in the

presence of recursive programs. For example, the Datalog program introduced in the introduction

features a recursively defined predicate path, which could lead to the infinite call chain path(1, 𝑋 ),
path(1, 𝑋 ), etc. when there is edge(1, 1). Note that the idea of distinguishing new from previous

argument tuples is part of the query/subquery algorithm [Vieille 1986]; the contribution of this

section is to reformulate this algorithm as a small-step operational semantics. We add a new query
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of 𝑝 with argument table 𝑣𝑎 to the global state Γ using helper function pushQuery:

pushQuery(Γ, 𝑝, 𝑣) = (Γ′, 𝑣 ′)
where 𝛼 = adorn(𝑝, 𝑣)

𝑣1, . . . , 𝑣𝑛 = Γ(𝑝𝛼 )
𝑣 ′ = 𝑣 \ (𝑣1 ∪ · · · ∪ 𝑣𝑛)
Γ′ = Γ ⊎ 𝑝𝛼 ↦→ 𝑣, 𝑣1, . . . , 𝑣𝑛

This function yields a filtered argument table 𝑣 ′ that only contains new arguments (not already

present on the stack) and an updated Γ′ where we push 𝑣 onto the stack associated with adorned

predicate 𝑝𝛼 . If the filtered argument table is non-empty, we create a new subquery with 𝑣 ′𝑎 as

argument table, an empty result table, and an initial supplementary table 𝑣 ′𝑎 for the first rule of 𝑝 .
The next reduction rule A-Skip complements A-Into and is only applicable if all argument tuples

are already active . In this case, we do not recurse but read the tuples found so far from IDB(𝑝).
We join this table with the argument table 𝑣𝑎 to obtain only those tuples that match the current

arguments. Finally, we have the congruence rule A-Step, which applies query reduction.

Query reduction. The query reduction relation takes care of subqueries that arise from predicate

calls in A-Into. Rule Q-Step is a congruence rule that reduces the frontmost rule of the subquery

using the rule reduction relation, updating the supplementary table of the subquery accordingly.

Once a rule is normalized to a value table 𝑣 , rule Q-Union adds the rule’s result table 𝑣 to the

subquery result 𝑣𝑟 . It then resets the supplementary table to the original argument table 𝑣𝑞 so that

the next rule in 𝑟𝑠 can continue.

The main responsibility of the query reduction relation is to iterate subqueries until all derivable

tuples have been computed. To this end, rules Q-Stable and Q-Iterate handle complete subqueries

that have no more rules to evaluate. If all tuples in the subquery result 𝑣𝑟 have been derived before

𝑣𝑟 ⊆ IDB(𝑝), we have found a fixpoint for the query of 𝑝 with argument table 𝑣𝑞 . We then remove

the subquery’s argument table 𝑣𝑞 from Γ using the helper function popQuery:

popQuery(Γ, 𝑝, 𝑣) = (Γ′, 𝑣1)
where 𝛼 = adorn(𝑝, 𝑣)

𝑣1, . . . , 𝑣𝑛 = Γ(𝑝𝛼 )
Γ′ = Γ ⊎ 𝑝𝛼 ↦→ 𝑣2, . . . , 𝑣𝑛

Removing 𝑣𝑞 from Γ is necessary to allow exploring the subquery again later, when the intensional

database IDB may have grown. Resetting Γ is the crucial fix to the QSQR algorithm proposed

by Madalinska-Bugaj and Nguyen to guarantee completeness of the semantics. Since 𝑣𝑟 did not

contain new tuples, Q-Stable simply returns the tuples found in IDB for 𝑝 and the original argument

table 𝑣𝑎 from the predicate call. If instead 𝑣𝑟 contains new tuples 𝑣𝑟 ⊈ IDB(𝑝), we must iterate the

rules of 𝑝 since we have not yet found a fixpoint. To this end, Q-Iterate adds the newly found tuples

to IDB and re-initializes the subquery: discard the subquery result and restart with all rules of 𝑝 .

Since Datalog can only explore finitely many tuples, the iteration will terminate eventually when

no new tuples are being derived.

3.4 Reduction Trace by Example
We have defined a complete small-step operational semantics for top-down Datalog. Here, we

illustrate how the reduction semantics can be used to evaluate the example Datalog program from
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the introduction, but with additional edges:

edge(1, 2). edge(2, 3).
edge(3, 1). edge(3, 4).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑌 ).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ).

Top-down evaluation always starts with a query. For example, consider the query path(1, 𝑌 ) that
finds all nodes 𝑌 reachable from 1. We initialize the intensional database map IDB as empty, and

initialize active queries Γ with mapping path𝑏𝑓 ↦→ 𝑣𝑞 where 𝑣𝑞 = table(𝑋, {(1)}). Here and in

subsequent examples of the paper, we omit positive signs from predicate calls and table values:

these are implicitly positive. The extensional database EDB only contains the mapping

edge ↦→ table(𝑋,𝑌, {(1, 2), (2, 3), (3, 1), (3, 4)})
We start with the following subquery:

sq(path(1, 𝑌 ), 𝑣𝑞, ∅, 𝑣𝑞,
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑌 ).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ) . )

After a sequence of Q-Step applications for the first Datalog rule we arrive at the Datalog program

where 𝑣 = table(𝑋,𝑌, {(1, 2)}). We reach the following intermediate term:

sq(path(1, 𝑌 ), 𝑣𝑞, ∅, 𝑣, 𝑣 ∨ path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ).)

Now, Q-Union is applicable hence, we extend the subquery result to 𝑣𝑟 = ∅ ∪ 𝑣 , reset the supple-

mentary table to 𝑣𝑞 , and discard the first rule:

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣𝑞, path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ).)

Again, after a sequence of Q-Step applications we get to 𝑣sup = table(𝑋,𝑍, {(1, 2)}):

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, path(𝑋,𝑌 ) :− path(𝑍,𝑌 ) .)

A-Into extends Γ to path𝑏𝑓 ↦→ 𝑣 ′𝑞, 𝑣𝑞 where 𝑣
′
𝑞 = table(𝑋, {(2)}) and replaces the path call with a

nested subquery 𝑄 :

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, path(𝑋,𝑌 ) :− 𝑄.)

𝑄 = sq(path(𝑍,𝑌 ), 𝑣 ′𝑞, ∅, 𝑣 ′𝑞,
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑌 ).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ). )

While reducing the inner subquery 𝑄 , we will eventually encounter a predicate call with the same

argument tuples again. At this point A-Skip is applicable and will force termination of the subquery.

Hence, the inner subquery is replaced with table 𝑣 ′′ = table(𝑋,𝑌, {(2, 3), (2, 4), (2, 1), (2, 2)}) to
yield the intermediate term:

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, path(𝑋,𝑌 ) :− 𝑣 ′′ .)

Now we apply R-Merge to yield 𝑣 ′sup = table(𝑋,𝑍,𝑌, {(1, 2, 3), (1, 2, 4), (1, 2, 1), (1, 2, 2)}) followed
by R-Result to produce the rule result:

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣 ′sup, table(𝑋,𝑌, {(1, 3), (1, 4), (1, 1), (1, 2)}))

Next, Q-Union extends the subquery result and discards the rule result:

sq(path(1, 𝑌 ), 𝑣𝑞, table(𝑋,𝑌, {(1, 2), (1, 3), (1, 4), (1, 1)}), 𝑣𝑞, 𝜖)
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We derived new tuples hence, Q-Iterate is applicable and will extend the intensional database map

IDB. The rule replaces the processed subquery with its initial version:

sq(path(1, 𝑌 ), 𝑣𝑞, ∅, 𝑣𝑞,
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑌 ).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ). )

At this point, the only active query is the initial query path(1, 𝑌 ) as all other subqueries stabilized
and therefore have been removed from the active queries map Γ by Q-Stable, hence Γ is path𝑏𝑓 ↦→ 𝑣𝑞 .

Therefore, we will take the same steps as in the last iteration, producing the same subquery:

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣 ′𝑟 , 𝑣 ′sup, 𝜖)
Hence, Q-Stable triggers as all tuples have already been discovered. The query has been successfully

evaluated, there are no active subqueries as Γ is empty and a value table remains:

table(𝑋,𝑌, {(1, 2), (1, 3), (1, 4), (1, 1)})
Now we have shown a reduction trace for a concrete Datalog program given a starting query.

4 A HYBRID DATALOG SEMANTICS
The small-step operational semantics presented in the previous section can be used as a debugging

semantics to follow the reduction trace of Datalog programs. The reduction rules describe the steps

taken with the step-into interaction. This is not sufficient for debugging programs since developers

also want to skip sub-computations using the step-over interaction. One way of implementing

step-over of a predicate call is to step through the predicate using step-into until the predicate

computation terminates, and show the predicate’s result to the user. Unfortunately, this strategy

has scalability issues for Datalog: The top-down debugging semantics is not fast enough to simulate

predicate computations.

Consider we want to debug the path predicate over the following graph with 150 nodes:

1
. . .

10
. . .

150

We start the debugging session with query path(1, 𝑌 ) and interactively use step-into until we reach
query path(11, 𝑌 ), which is first inner node of the cycle. To determine the result of path(11, 𝑌 ) we
want to use a step-over interaction. When we simulate the step-over interaction by repeatedly using

step-into until the subquery terminates, it takes roughly 5 minutes to complete debugging of the

program. Such long delays are unacceptable for a debugging interaction. Note that the simulated

debugging trace consists of 255849 step-into interactions, which take 1-2 ms on average. We will

discuss the scalability issue of step-into interactions in more detail in Section 7. The problem is not

the step-into performance, but the simulation of step-over on top of step-into. Is there a better way

to support step-over interactions for Datalog?

We propose to construct a hybrid Datalog semantics that uses top-down stepping for step-into

but bottom-up results for step-over. As mentioned before, Datalog systems usually implement a

bottom-up semantics, which is more efficient but ill-suited for debugging. The bottom-up semantics

computes a database of all derivable tuples. The key idea is to read the predicate result from the

bottom-up database when a step over occurs, rather than computing it on demand. Since the

bottom-up database contains the tuples for all predicates in the program, we can effectively step

over any predicate call in the program. Indeed, when using the bottom-up database to step over

path(11, 𝑌 ) in our example, the program completes debugging in only 180 ms. In this section, we

formalize and exemplify step-over for non-recursive predicate calls, while Section 5 extends this

idea to support recursive predicate calls.
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4.1 Efficient Step-Over by Reading the Bottom-Up Database
We add the bottom-up database as global state BU and assume it has been computed prior to

reduction. That is, when starting the debugger, a bottom-up Datalog solver must compute BU .

Global Information:

(bottom-up derived database) BU ∈ 𝑝 → 𝑣

For each predicate in the debugged program, BU provides the final value table of derivable tuples

for that predicate. For example, for the path predicate, BU contains all pairs (𝑋,𝑌 ) of nodes for
which 𝑋 can reach 𝑌 . When stepping over a call path(1, 𝑌 ), we can select all matching pairs from

BU with a single join operation.

We formalize this behavior as an additional reduction rule A-Over for predicate calls:

nonRecursiveCall(𝑝𝑠 (𝑡)) 𝑣𝑎 = eval(cols(𝑝), 𝑡, 𝑣sup)
A-Over

𝑣sup ⊢ 𝑝𝑠 (𝑡) →𝐴 𝜌 𝑡/cols (𝑝 ) (BU (𝑝) ⊲⊳ 𝑣𝑎)𝑠

Rule A-Over only applies to non-recursive predicate calls 𝑝 (also not indirectly recursive) for reasons

that we explain below. Technically, A-Over is applicable when the called predicate 𝑝 is not in the

currently active strongly connected component of the predicate call graph. We then determine the

argument table 𝑣𝑎 just like before in A-Into and A-Skip, but then look up the predicate result in BU .

The resulting table carries the sign of the predicate call to mark if it was produced by a positive or

negative call. We then merge the argument table 𝑣𝑎 with the predicate result to obtain the tuples

that match 𝑣𝑎 according to this particular predicate call. Finally, we have to rename the columns of

the table according to the argument terms like before.

Our new rule makes the semantics non-deterministic: predicate calls can be reduced with either

one of the mutually exclusive A-Into or A-Skip, or alternatively with A-Over. This is ambiguity is

by design, since users of the debugger should be able to choose how to continue evaluation. Thus,

an important property of our extended semantics is confluence: All non-stuck reduction traces of a

term normalize to the same value table. We provide a proof sketch for atom reduction.

Theorem 1 (Local Confluence for Atom Reduction). Let 𝑎 →𝐴 𝑏 and 𝑎 →𝐴 𝑐 , then there
exists 𝑑 such that 𝑏 →𝐴∗ 𝑑 and 𝑐 →𝐴∗ 𝑑 .

Proof sketch. There are only two interesting cases to consider, namely 𝑎 is reduced by A-Skip

and A-Over, or when 𝑎 is reduced by A-Into and A-Over. In both cases 𝑎 = 𝑝𝑠 (𝑡)
Case 1: Let 𝑎 →𝐴 𝑏 by A-Skip and 𝑎 →𝐴 𝑐 by A-Over. Then

𝑏 = 𝜌 𝑡/cols (𝑝 ) (IDB(𝑝) ⊲⊳ 𝑣𝑎)𝑠 and 𝑐 = 𝜌 𝑡/cols (𝑝 ) (BU (𝑝) ⊲⊳ 𝑣𝑎)𝑠 .

Since the query/subquery approach and the bottom-up semantics compute the same result for

the same query, IDB(𝑝) ⊲⊳ 𝑣𝑎 = BU (𝑝) ⊲⊳ 𝑣𝑎 for stable 𝑝 under argument table 𝑣𝑎 . In A-Skip, 𝑝

is stable and hence 𝑏 = 𝑐 .

Case 2: Let 𝑎 → 𝑏 by A-Into and 𝑎 → 𝑐 by A-Over. Then

𝑏 = sq(𝑝𝑠 (𝑡), 𝑣 ′𝑎, table(cols(𝑝), ∅), 𝑣 ′𝑎, rules(𝑝)) and 𝑐 = 𝜌 𝑡/cols (𝑝 ) (BU (𝑝) ⊲⊳ 𝑣𝑎)𝑠 .

Subquery 𝑏 normalizes to 𝑑 = 𝜌 𝑡/cols (𝑝 ) (IDB(𝑝) ⊲⊳ 𝑣𝑑 )𝑠 under →𝑄
using A-Step, where the

last step is computed by Q-Stable. Since 𝑣𝑑 = 𝑣𝑎 is the argument table pushed by A-Into and

returned by popQuery in Q-Stable, we have IDB(𝑝) ⊲⊳ 𝑣𝑑 = BU (𝑝) ⊲⊳ 𝑣𝑎 because the top-down

and the bottom-up semantics coincide. Thus, 𝑏 →𝐴∗ 𝑑 = 𝑐 , which proofs confluence.

□
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This proof sketch oversimplifies some concerns, in particular, the induction for the mutually

recursive reduction relations and the base assumption that our small-step semantics for top-down

Datalog is equivalent to a standard bottom-up semantics of Datalog. Resolving these concerns

formally is far from trivial, given that the top-down and bottom-up semantics start evaluation from

opposite sides (no shared control flow) and use contrary fixpoint strategies (depth-first in top-down,

breadth-first in bottom-up). Mitigating these concerns will be a focus of our future work.

We want to highlight that even though the confluence property holds, repeat applications of A-

Into do not necessarily simulate A-Over. Or conversely, a step over does not necessarily correspond

to a sequence of step intos. Simply put, the difference is that A-Into modifies the intensional database

IDB whereas A-Over does not. This can affect subsequent step-intos in a subtle way, as illustrated

by the following scenario. If we step into a query 𝑝 (𝑡), we need to determine the fixpoints for all

predicate calls 𝑞1 (𝑡1), . . . , 𝑞𝑛 (𝑡𝑛) required to answer 𝑝 (𝑡). Therefore, Q-Iterate is executed for each

required subquery at least once, hence extending the intensional database IDB. In contrast, if we

step over 𝑝 (𝑡), we do not reach the calls 𝑞1 (𝑡1), . . . , 𝑞𝑛 (𝑡𝑛) and do not store their results in IDB.
Therefore, when we later encounter another call of 𝑞1 (𝑡1), . . . , 𝑞𝑛 (𝑡𝑛), we may need extra fixpoint

iterations to reach a stable result. Nonetheless, the fixpoint result of each subquery is the same,

which is why confluence holds.

4.2 Reduction Trace by Example
To showcase A-Over, let us have a look at a reduction trace for the following Datalog program that

derives parents and grandparents:

father(𝐵𝑜𝑏,𝐶ℎ𝑎𝑟𝑙𝑖𝑒). father(𝐵𝑜𝑏, 𝐷𝑎𝑣𝑒). father(𝐷𝑎𝑣𝑒,𝑀𝑎𝑙𝑙𝑜𝑟𝑦).
mother(𝐴𝑙𝑖𝑐𝑒,𝐶ℎ𝑎𝑟𝑙𝑖𝑒). mother(𝐸𝑣𝑒, 𝐷𝑎𝑣𝑒).

parent(𝑋,𝑌 ) :− edb father(𝑋,𝑌 ).
parent(𝑋,𝑌 ) :− edb mother(𝑋,𝑌 ).

grandparent(𝑋,𝑌 ) :− parent(𝑋,𝑍 ), parent(𝑍,𝑌 ).
We start the evaluation of the program with query grandparent(𝐵𝑜𝑏,𝑌 ). Hence, we initialize IDB

as empty and the active queries Γ with mapping grandparent𝑏𝑓 ↦→ 𝑣𝑞 where 𝑣𝑞 = table(𝑋, {(𝐵𝑜𝑏)}).
The initialized EDB contains the following mappings:

father ↦→ table(𝑋,𝑌, {(𝐵𝑜𝑏,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐵𝑜𝑏, 𝐷𝑎𝑣𝑒), (𝐷𝑎𝑣𝑒,𝑀𝑎𝑙𝑙𝑜𝑟𝑦)})
mother ↦→ table(𝑋,𝑌, {(𝐴𝑙𝑖𝑐𝑒,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐸𝑣𝑒, 𝐷𝑎𝑣𝑒)})

For the hybrid semantics, we need to define the set of bottom-up derived tables BU as well. A

bottom-up Datalog solver will derive the following set of tables:

father ↦→ table(𝑋,𝑌, {(𝐵𝑜𝑏,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐵𝑜𝑏, 𝐷𝑎𝑣𝑒), (𝐷𝑎𝑣𝑒,𝑀𝑎𝑙𝑙𝑜𝑟𝑦)})
mother ↦→ table(𝑋,𝑌, {(𝐴𝑙𝑖𝑐𝑒,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐸𝑣𝑒, 𝐷𝑎𝑣𝑒)})
parent ↦→ table(𝑋,𝑌, {(𝐵𝑜𝑏,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐵𝑜𝑏, 𝐷𝑎𝑣𝑒), (𝐷𝑎𝑣𝑒,𝑀𝑎𝑙𝑙𝑜𝑟𝑦),

(𝐴𝑙𝑖𝑐𝑒,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐸𝑣𝑒, 𝐷𝑎𝑣𝑒)})
grandparent ↦→ table((𝑋,𝑌, {(𝐵𝑜𝑏,𝑀𝑎𝑙𝑙𝑜𝑟𝑦), (𝐸𝑣𝑒,𝑀𝑎𝑙𝑙𝑜𝑟𝑦)})

For query grandprarent(𝐵𝑜𝑏,𝑌 ) we start evaluation with following subquery:

sq(grandparent(𝐵𝑜𝑏,𝑌 ), 𝑣𝑞, ∅, 𝑣𝑞, grandparent(𝑋,𝑌 ) :− parent(𝑋,𝑍 ), parent(𝑍,𝑌 ).)
Q-Step is applicable which applies R-Step which will reduce the first atom of the Datalog rule. The

first atom is a predicate call of parent. We can either apply A-Into or A-Over because the call of

parent is not a recursive one. We choose A-Over that utilizes BU to derive the table of the call. To

produce the correct result for the predicate call, we join the bottom-up table EDB(parent) with
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𝑣𝑎 = table(𝑋, {(𝐵𝑜𝑏)}). At last, we need to rename the columns to match the arguments of the

predicate call: Hence, A-Over replaces the atom with table

𝑣 = table(𝑋,𝑍, {(𝐵𝑜𝑏,𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐵𝑜𝑏, 𝐷𝑎𝑣𝑒)})
such that we obtain

sq(grandparent(𝐵𝑜𝑏,𝑌 ), 𝑣𝑞, ∅, 𝑣𝑞, grandparent(𝑋,𝑌 ) :− 𝑣, parent(𝑍,𝑌 ).)
This shows how we can utilize the bottom-up derived database to step-over a non-recursive

predicate call instead of producing a new subquery that has to determine a fixpoint. Recursive

predicate calls are more complicated as the next section explains.

5 A HYBRID SEMANTICS FOR RECURSIVE DATALOG
The previous section introduces the idea of a hybrid semantics that steps into according to top-

down but steps over according to bottom-up. However, we limited this feature to non-recursive

predicate calls. This conflicts with reality, where Datalog programs are highly recursive. Indeed, a

Datalog debugger should allow stepping through the fixpoint computation of (mutually) recursive

predicates, while also allowing to skip individual recursive sub-computations with step-over.

However, supporting step-over for recursive predicate calls requires a more sophisticated semantics.

The problem is this: The bottom-up database contains the final result of a predicate. But when

stepping over a recursive predicate call, we need to see a result that is consistent with the current

progress within the fixpoint computation, not the final result. Consider the following example,

where the directed graph contains two non-overlapping cycles: 1 → 2 → 3 → 1 and 4 → 5 → 4.

edge(1, 2). edge(2, 3). edge(3, 1).
edge(1, 4). edge(4, 5). edge(5, 4).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑌 ).
path(𝑋,𝑌 ) :− edb edge(𝑋,𝑍 ), path(𝑍,𝑌 ).

Assume we want to debug the computation of cycle 1 → 2 → 3 → 1, starting with query path(1, 𝑌 ).
Let’s say we stepped to the second atom of the second rule. That is, the current program point is a

subquery of path(2, 𝑌 ) with
𝑣𝑞 = table(𝑋, {(1)}), 𝑣𝑟 = table(𝑋,𝑌, {(1, 2)}), 𝑣sup = table(𝑋,𝑍, {(1, 2)})

such that

sq(path(1, 𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, path(𝑋,𝑌 ) :− path(𝑍,𝑌 ).) .
If we now apply A-Over, we obtain all tuples of table path from the bottom-up database where

column 𝑋 is 2. The problem is that BU contains the final fixpoint of the derivation, which is

inconsistent with our current debugging trace. Specifically, the bottom-up derived database BU is:

edge ↦→ table(𝑋,𝑌, {(1, 2), (1, 4), (2, 3), (3, 1), (4, 5), (5, 4)})
path ↦→ table(𝑋,𝑌, {(1, 2), (1, 4), (2, 3), (3, 1), (4, 5), (5, 4), (1, 3), (1, 1), (1, 5), (2, 1),

(2, 2), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4), (3, 5), (4, 4), (5, 5)}
Hence, A-Over obtains table(𝑋,𝑌, {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5)}). However, paths 1 → 2, 1 → 4,

and 1 → 5 are only just being discovered and would not normally affect a recursive predicate call.

Thus, A-Over should only yield table(𝑋,𝑌, {(2, 1), (2, 3)}): the tuples derivable for path(2, 𝑌 ) in
the current fixpoint iteration.

Fundamentally, the problem is that the bottom-up and top-down semantics employ conflicting

fixpoint strategies. A bottom-up semantics computes the tuples of recursive predicates in iterations,

where each iteration uses at least one newly derived tuple from the previous iteration (known

as semi-naïve evaluation). In contrast, the recursive query/subquery approach of the top-down
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semantics follows the recursive predicate calls until a query is revisited. Thus, even if we were to

track the iteration count of tuples in the bottom-up database, we would not know which tuples to

produce when in the top-down semantics.

One correct solution for this problem would be go back to simulating step-over using step-into.

We propose an alternative that exploits the bottom-up database, but ignores all tuples not derivable

in the current fixpoint iteration.

5.1 Blacklisting Tuples That Are Ahead of Their Time
blacklisting tuples that are ahead of their time To support step-over for recursive predicate calls

efficiently, we want to read the call result from the bottom-up database like before. But, as explained

above, the bottom-up database contains tuples we need to ignore to produce a result that is

consistent with the fixpoint computation of the top-down semantics. To this end, we must answer

the following two questions:

(i) Which tuples do we need to ignore to obtain a correct result from the bottom-up database?

(ii) How can we realize this strategy efficiently?

To answer the first question, consider the following intermediate Datalog term:

sq(path(𝑋,𝑌 ), 𝑣𝑞, 𝑣𝑟 , 𝑣sup, path(𝑋,𝑌 ) :− sq(path(𝑍,𝑌 ), 𝑣 ′𝑞, 𝑣 ′𝑟 , 𝑣 ′sup, path(𝑋,𝑌 ) :− path(𝑍,𝑌 ) .).)

When stepping over the inner predicate call path(𝑍,𝑌 ), which tuples do we need to ignore from

the bottom-up database? Careful investigation of the query/subquery approach reveals the answer:

We must ignore tuples that are currently being computed by active subqueries and all tuples that

depend on them. For an active subquery of 𝑝 , only tuples already written to IDB(𝑝) by Q-Iterate

may be considered, but no other intermediate answers. For our example, we need to ignore tuples

that depend on the tuples path(𝑋,𝑌 ) under table 𝑣𝑞 and path(𝑍,𝑌 ) under table 𝑣 ′𝑞 . More concretely,

when we start with query path(1, 𝑌 ), we ignore all paths that begin at node 1 for the outer subquery.

The inner subquery is of the form path(𝑍,𝑌 ) under supplementary table table(𝑋,𝑍, {(1, 2)}), hence
we also ignore all paths that begin at node 2. Hence, a step over the innermost path(𝑍,𝑌 ) under
table(𝑍, {(3)}) will produce table(𝑍,𝑌, {(3, 1)}) only, because paths starting at 1 are only visible

in later fixpoint iterations.

Now the question arises howwe can exploit the bottom-up database while ignoring specific tuples

and their dependents. Clearly, we cannot compute a new bottom-up database whenever the set of

active subqueries changes. But, what if we use an incremental bottom-up semantics for Datalog

that can react to external changes, such as IncA [Szabó et al. 2021] or Differential Datalog [Ryzhyk

and Budiu 2019]? Is it then possible to mark ignored tuples and have the incremental semantics

update the bottom-up database appropriately without recomputing it from scratch?

We found a way to engineer the incremental bottom-up database to do exactly that. Our solution

consists of two steps: Generate extensional blacklist predicates into the original Datalog program,

and insert/remove ignored tuples into the blacklist predicates during debugging. For example, we

rewrite the rules of our path predicate as follows:

path(𝑋,𝑌 ) :− edb bl_path_bf− (𝑋 ), edb bl_path_fb− (𝑌 ), edb bl_path_bb− (𝑋,𝑌 ), edb edge(𝑋,𝑌 ).
path(𝑋,𝑌 ) :− edb bl_path_bf− (𝑋 ), edb bl_path_fb− (𝑌 ), edb bl_path_bb− (𝑋,𝑌 ), edb edge(𝑋,𝑍 ),

path(𝑍,𝑌 ).

For each adornment of path that occurs in the program, we add a blacklist guard to the path rules.

Blacklist guards are negative calls that ensure a tuple is not blacklisted and thus may be derived.
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The blacklist transformation is relatively simple and syntactically rewrites a Datalog program:

𝐵𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 (𝑝 (𝑡) :− 𝑎.) =


𝑝 (𝑡) :− 𝑎. if nonRecursive(𝑝)
𝑝 (𝑡) :− 𝑎,𝑏. if recursive(𝑝), 𝛼 = adornments(𝑝),

𝑏𝑖 = bl_𝑝_𝛼−
𝑖 (𝜋𝛼𝑖 (𝑡))

For a non-recursive predicate (also not indirectly recursive), no changes are necessary since the

predicate becomes stable in a single fixpoint iteration. However, for recursive predicates (also

indirectly recursive), we introduce additional atoms 𝑏, one for each adornment in 𝛼 . Each new

atom 𝑏𝑖 is a negative call to a new extensional predicate named bl_𝑝_𝛼𝑖 , where 𝑝 is the name of the

current predicate and 𝛼𝑖 is the adornment currently considered. The blacklist predicate is applied

to those terms in 𝑡 that are marked bound in the adornment 𝛼𝑖 . The blacklist transformation only

needs to be applied to the Datalog program evaluated bottom-up. The top-down evaluation can

operate on the original Datalog program.

5.2 Formalizing Step-Over for Recursive Predicates
The previous subsection introduced blacklist predicates that prevent certain derivations in the

bottom-up database. The blacklist predicates are all part of the extensional database, meaning

their contents are specified manually. Initially, all blacklists are empty. When using an incremental

Datalog solver, we can insert and remove tuples from extensional predicates dynamically, and

the incremental solver updates all derived predicates accordingly. We make use of this feature to

blacklist tuples that match active subqueries as part of the debugging semantics, as we explain here.

We extend our hybrid semantics from Section 4 to maintain and use blacklist predicates. To this

end, we require global state to keep track of the blacklisted queries and the updated bottom-up

database. Luckily, we already maintain global state to track active subqueries, namely Γ. Therefore,
we only introduce new global state that represents the updated bottom-up database.

Global Information:

(blacklist-aware bottom-up database) BU ∈ (𝑝, Γ) → 𝑣

Since the bottom-up database operates on the blacklist-transformed program, it only yields derived

tuples not depending on active queries. We make this explicit by adding Γ as a parameter to BU .

We can now extend and adapt the semantics to support efficient step-over recursive predicate

calls. We introduce a new reduction rule A-OverRecursive to step over recursive predicate calls:

recursiveCall(𝑝𝑠 (𝑡)) 𝑣𝑎 = eval(cols(𝑝), 𝑡, 𝑣sup)
A-OverRecursive

𝑣sup ⊢ 𝑝 (𝑡)𝑠 →𝐴 𝜌 𝑡/cols (𝑝 ) (BU (𝑝, Γ) ⊲⊳ 𝑣𝑎 ∪ IDB(𝑝) ⊲⊳ 𝑣𝑎)𝑠

We determine the argument table 𝑣𝑎 as in A-Over, but in A-OverRecursive we read from the

blacklist-aware bottom-up database BU (𝑝, Γ). This yields the derivable tuples for the predicate call,
except for tuples that depend on active subqueries. For the first fixpoint iteration of a subquery, this

behavior is correct and sufficient. Only in later fixpoint iterations, it is important to also consider

the tuples derived by the top-down debugger itself in IDB(𝑝). Therefore, A-OverRecursive yields
the relevant bottom-up tuples and the tuples derived top-down.

With the help of the blacklist and an incremental bottom-up Datalog solver, we can now step

over arbitrary predicate calls efficiently. Specifically, we do not need to simulate stepped-over

predicates with step-into. We now have all the tools to implement a working debugger for Datalog.
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6 DEBUGGER IMPLEMENTATION AND FRONTEND DEBUGGING
The small-step operational semantics presented in the previous sections are sufficient for the defini-

tion of an interactive Datalog debugger. We validate this claim by implementing a fully functional

debugger that we make available open source
1
as part of the IncA Datalog framework [Pacak et al.

2022]. In this section, we describe the debugger implementation and optimizations we applied on

top of the formal semantics. Since Datalog is often used as an intermediate representation (IR)

rather than as a frontend language, we also show how the debugger can support debugging of

languages that compile to Datalog.

6.1 From Small-Step Semantics to Debugger
We implemented a debugger for Datalog following the formal semantics presented in this paper. In

particular, the debugger supports stepping through query execution with the following interactions:

• Step into: A single step of the query reduction relation →𝑄
, using any rule but A-Over.

• Step over: Conversely, a single step of the query reduction relation, using any rule but A-Into.

• Step out: Abort and discard the current subquery and perform a step-over interaction of its

call instead. Note how this avoids the repeated application of step-over until reaching the end

of the current subquery.

The debugger uses IncA’s incremental bottom-up Datalog solver [Szabó et al. 2021].

Our debugger implementation deviates from the formal semantics in multiple aspects. First of

all, the debugger uses a flattened representation for the intermediate terms of Datalog: Rather than

nesting active subqueries in the syntax, we maintain a call stack where each active subquery has its

own call frame. This is possible because the semantics deterministically executes rules and atoms

from left to right, so that there can be only one active subquery at each recursion level (otherwise

would need to maintain a call tree). Rule A-Into pushes a new call frame to the stack (instead of

creating a subquery) and rule Q-Stable replaces the current call frame with the subquery result. To

pop from the call stack, we introduce a new rule Q-Result that pops the subquery result from the

stack and replaces the predicate call of the current active subquery with the resulting atom table.

This way, the call stack provides constant-time access to the most recently created subquery, to

which all other reduction rules apply. In addition, the implementation groups the atom reduction

rules that handle equalities within a single rule A-Eq. At last, the IR supports executing arbitrary

Scala code. Hence, we extend the debugger with rule A-Prim that executes the Scala code with each

supplementary table entry as input.

The debugger incorporates other optimizations that are more local, but also have a noticeable

performance impact. First, rules with overlapping preconditions (like A-Into and A-Skip) are imple-

mented such that the preconditions are run at most once. Second, we implement the termination

condition in rules Q-Stable and Q-Iterate by comparing the size of the current result to the result

size in the bottom-up database, which avoids a costly subset check in each iteration. We also only

store derived tuples for recursive predicates in IDB as non-recursive predicates do not need fixpoint

iteration. Third, we represent value tables as immutable b-trees with efficient table operations [Jor-

dan et al. 2019]. In particular, this data type provides an efficient join implementation, which is

crucial for executing Datalog on considerable amounts of data.

Finally, our debugger also supports breakpoints. A breakpoint identifies a predicate, a rule inside

a predicate, or an atom inside a rule at which execution should stop. Breakpoints can be registered

and de-registered with the debugger. Breakpoints affect the semantics of the step-over reduction:

A-Over may not be applied to predicate calls that can transitively reach an active breakpoint. We

1
https://gitlab.rlp.net/plmz/inca-scala
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add this as an additional precondition. Similarly, a step-out interaction is not applicable if the

remainder of the current subquery may reach a breakpoint. In both situations, we fall back to a

new resume interaction instead:

• Resume: The resume interaction runs the program until it terminates or a breakpoint is hit. To

run the program, resume iteratively applies prioritized interactions: 1. step out if possible, 2.

step over if possible, 3. step into otherwise.

6.2 Debugging Datalog Frontends
Our debugger supports core Datalogwith negation. However, Datalog dialects usually add numerous

language features on top of core Datalog or provide entirely different frontend languages. For

example, the Souffle language provides a component system, typed relations, and multi-head

rules [Scholz et al. 2015]. And IncA not only provides a Datalog-flavored constraint language [Szabó

et al. 2016], but also functional programming frontend called functional IncA that compiles to core

Datalog [Pacak and Erdweg 2022]. In principle, we can use the core Datalog debugger to evaluate

core Datalog code generated by Souffle and IncA. However, the user would see debugging steps in

terms of the core Datalog code: core Datalog rules with auxiliary atoms and variables. This breaks

the abstraction of the frontend language and hinders the applicability of the debugger severely. This

subsection explains how we adopted our core Datalog debugger to debug Souffle and functional

IncA code at their abstract level.

The basic idea for debugging Datalog frontends is simple: We define a partial function lift from

core Datalog intermediate terms to the intermediate terms of the frontend language that should be

displayed as steps to the user. We also define the inverse of lift called lower , which translates the

frontend term back to its core Datalog original. Given a reduction relation →𝑄
of core Datalog, we

can then define a reduction relation{ for the frontend language as follows:

lower (𝑏) →𝑄 𝑄1 →𝑄 . . . →𝑄 𝑄𝑛+1 lift (𝑄1) = ⊥ . . . lift (𝑄𝑛) = ⊥ lift (𝑄𝑛+1) = 𝑏′

𝑏 { 𝑏′

That is, the frontend debugger steps in core Datalog using query reduction until it reaches an

intermediate term that can be lifted into the frontend. That is, lifting a query 𝑄 is successful

(lift (𝑄) ≠ ⊥). While this approach is not particularly novel, this paper provides the necessary

formal infrastructure to explain and specify this technique precisely. For breakpoints, we define

another lowering function that translates frontend breakpoints into the core Datalog breakpoints.

The breakpoint-lowering function should be defined such that the lowered breakpoints stop at

intermediate terms that can be lifted back into the frontend. In practice, we found that implementing

the lifting and the two lowering functions was easy for Souffle and functional IncA.

The frontend reduction relation{ specified above works well when a Datalog frontend merely

elaborates into core Datalog. That is, a single construct compiles to a single Datalog rule, as is the

case with most Souffle features. Frontend languages that apply more complex compilation rules

require extra care. For example, functional IncA features if-then-else expressions that compile into

two rules: one rule that asserts the condition evaluates to true and executes the then branch, and

one rule that asserts the condition evaluates to false and executes the else branch. When using the

lifting approach of{ from above, we obtain an inadequate reduction relation for functional IncA:

• If the condition evaluates to true, we correctly step through the corresponding rule first.

However, we will subsequently step through the else rule, re-evaluate the condition, and only

then discard this rule as unsatisfiable (always failing).

• Conversely, if the condition fails, we step through the then rule until the condition failed, then

step through the same prefix in the else rule, and only then step through the else branch.
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Either way, we ran the condition and all atoms leading up to the condition twice, which is not what

we expect from a debugger of a functional language. Therefore, we augment the frontend debugger

with extra logic to skip unsatisfiable rules and satisfied prefixes. Unsatisfiable rules result from

conditionals (and pattern matching) when execution has already committed to another branch (or

match case). Satisfied prefixes also result from conditionals (and pattern matching) when execution

reached a condition that failed and needs to try another branch (or match case). With these two

mechanisms in place, we can adopt the core Datalog debugger to provide debugger for functional

IncA that meets user expectations.

7 PERFORMANCE EVALUATION
In this section, we evaluate if the proposed top-down debugging approach can be used for realistic

Datalog programs, and if the hybrid semantics is necessary. To this end, we measure the step-into

and step-over running times for both semantics on synthetic and real-world Datalog programs. We

performed all measurements on a machine with an Intel Core i7 at 2.7 GHz with 16 GB of RAM,

running 64-bit OSX 13.2.1, Java 11.0.18.

7.1 Is a Hybrid Semantics Necessary?
Without our hybrid semantics, top-down Datalog debuggers must simulate step-over interactions

through a sequence of step-into interactions. To evaluate if this is feasible, we measure their

respective running times and compare them to the time required by a bottom-up Datalog solver.

Setup. We use the educational Datalog example that derives transitive paths between nodes of

a graph, which we have seen throughout this paper. We consider the following synthetic graph,

where we can configure the length of the cycle by setting node 𝑋 ∈ {10, 20, . . . , 990, 1000}:

1
. . .

10
. . .

X

We measure and compare three scenarios for the initial query path(1, 𝑌 ):
(1) Exclusively use step-into interactions until the query terminates.

(2) Use step-into interactions until reaching query path(11, 𝑌 ), then use step over. Since path(11, 𝑌 )
is within the graph’s cycle, this exercises our A-OverRecursive from the hybrid semantics.

(3) Use a bottom-up semantics without stepping, as required to initialize the hybrid semantics.

Note that we chose to step over the path call on first inner node of the cycle as the blacklist-

propagation will delete all paths that cross node 11. This scenario is the worst-case scenario

which will stress the blacklist-propagation of the incremental bottom-up semantics when us-

ing A-OverRecursive. We execute these scenarios and measure their running times for 𝑋 ∈
{10, 20, . . . , 990, 1000}. We report the average times of 20 runs after discarding 5 warmup runs.

Results. Figure 5 shows the running times on the left and number of executed steps on the

right. For the step-into scenario (1), we observe an exponential running time, whereas the step-over

scenario (2) and bottom-up scenario (3) exercise quadratic running times. Interestingly, the number

of steps remains constant when using a step over at path(11, 𝑌 ), since we skip the computation for

remainder of the graph as X grows. Only the running time grows with 𝑋 , because the incremental

blacklist propagation has to delete a quadratic number of path tuples with increasing 𝑋 .

The results show that using repeated step-into interactions to simulate a step-over interactions

is infeasible as it requires too many steps, taking too much time. Our hybrid semantics and its

step-over interaction based on an incremental bottom-up Datalog is necessary and effective.
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Fig. 5. Running times of step-into vs step-over vs bottom-up for path program

7.2 Real-World Workloads
The previously measured path example is an educational example but not a real-world program.

Even for the educational example it is infeasible to only use step-into when debugging because it

takes an excessive amount of steps. Hence, interactive debugging of real-world programs stands

or falls with the responsiveness of the step-over interaction. To show that our hybrid top-down

debugging approach is applicable to real-world programs with realistic workloads, we measure the

step-over performance for an inter-procedural points-to analysis of JVM bytecode provided by the

Doop framework [Bravenboer and Smaragdakis 2009].

Setup. We debug Doop’s context and flow insensitive points-to analysis on the MiniJava com-

piler.
2
This program only consists of 6.5k lines of Java code, but the inter-procedural analysis also

transitively analyzes all reachable parts of the JDK. We use the Doop fact extractor to translate the

JVM bytecode to an EDB that describes the program and the transitively reachable parts of the

JDK, amounting to 380 MB of data.

We consider three debugging scenarios for measuring the step-into performance:

(1) Derive all classes implementing method accept and show how they are computed.

(2) Derive all supertypes of two given JDK types and show how they are computed.

(3) Derive if a given variable points to a given heap location and follow the computation.

Additionally, we define three variations of scenario (3) for measuring the step-over performance:

(3a) Step into VarPointsTo, but step over all other predicate calls.

(3b) Step into VarPointsTo and StaticFieldsPointsTo, but step over all other predicate calls.

(3c) Step into VarPointsTo and InstanceFieldPointsTo, but step over all other predicate calls.

(3d) Step into VarPointsTo and Reachable, but step over all other predicate calls.

Note that VarPointsTo, StaticFieldPointsTo, InstanceFieldPointsTo, and Reachable are mutually

recursive. We run each of these debugging scenarios only once, where we consider a timeout of 10

minutes after doing warmup with a timeout of 2 minutes 5 times. For scenarios (1–3), we measure

2
https://github.com/mtache/minijavac
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Fig. 6. Running times (ms) of reduction rules of Doop points-to analysis.

the running time of each individual reduction rule, whereas for scenarios (3a–3d) we only measure

the running time of step-over interactions (A-Over or A-OverRecursive).

Results. We present the results of the benchmark in Figure 6. The boxplots on the left show

the running times (log scale) of all reduction rules executed during scenarios (1–3), including an

additional boxplot combining all 38029 reduction steps. Most reduction rules only require at most

1 ms to execute, except A-EDB (up to 1000 ms) and A-Prim (up to 100 ms). The boxplots also

exclude outliers, but we want to mention that out of the 2202 steps with A-Into, there was one

extreme outlier that took 40s and a few of outliers that took around 10s to execute. The running

times of A-EDB and the outliers of A-Into are slow because they construct an index on-the-fly

for a complete EDB or argument relation prior to joining, which can take a significant amount

of time. With enough engineering effort, it should be possible to optimize the index construction

and operations on tables to reduce these times considerably. A-Prim executes Scala code using

reflection on each entry of a value table, which has a severe penalty in our current implementation.

We show the step-over running times (linear scale) for the interactive debugging scenarios

(3a–3d) on the right-hand side of Figure 6. The mean step-over running time is below 10 ms and

indeed almost all step-over steps require less than 100 ms. Again, the boxplots exclude outliers:

Scenario (3c) has one outlier in 1278 step-over interactions that took 168s and scenario (3d) has

two outliers in 888 step overs taking 62s and 40s. These outliers are due to the incremental deletion

of tuples that have a high impact on the bottom-up database. Szabó et al. [2021] showed that such

high-impact changes exist but are rare for static-analysis applications of Datalog; most changes

have low impact and can be executed efficiently.

We conclude that interactive debugging of real-world Datalog programs is feasible with the

hybrid top-down debugger. Both step-into and step-over interactions are executed fast enough

for interactive debugging. Even though there are some extreme outliers, they are rare and do

not dominate the debugging session. Thus, a hybrid debugging semantics is necessary (previous

subsection) and sufficient (this subsection).
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8 RELATEDWORK
We propose to enable an interactive debugging experience for Datalog programs by exploring

the top-down reduction trace of a Datalog program using a top-down evaluation strategy. To

efficiently allow for step-over interactions, we provide a hybrid semantics for Datalog that mainly

uses top-down but relies on a bottom-up derived database when stepping over predicate calls. We

will compare our debugging approach of Datalog programs with related work in this section.

The explanation system of DeDEx utilizes derivation trees to show why specific tuples have

been derived [Wieland 1990]. This system can only show derivation trees for tuples that have been

derived. Hence, it cannot explain why a tuple has not been derived. Additionally, the system requires

a complete tuple. In contrast, our approach allows to start with arbitrary queries of predicates.

That is, we are not forced to only select tuples that have been derived and we can provide partial

queries to explain how a specific query has been answered. This allows to show the reduction trace

for multiple tuples. Their system allows for a restricted query facility mode. This mode allows

to ignoring and adding rules and tuples when constructing derivation trees for predicates. Our

approach does not allow for ignoring or adding specific rules. However, our hybrid approach allows

for ignoring tuples to allow for stepping over cyclic predicate calls. Their approach will only ignore

tuples and it will not effect tuples that depend on the existence of the ignored tuple. We propose to

use an incremental Datalog solver to always keep a consistent deductive database as a basis.

Russo and Sancassani [1991] propose to explore an evaluation post-mortem, meaning after

executing a Datalog program. They use a derivation tree to show why a tuples has been derived

as well. They instruct their Datalog solver to derive derivation tree fragments during bottom-up

evaluation. This allows for efficient exploration of derivation trees. We also rely on the tuples

derived by a Datalog solver. However, our approach allows to use an off-the-shelf incremental

Datalog solver instead of extending the Datalog solver to generate additional information.

Explain is capable of explaining how specific tuples were derived and which tuples are derived

based on a specific tuple [Arora et al. 1993]. They use derivation trees to visualize how a specific

tuple has been derived as well. Again, this system does not allow partial tuples which our approach

is capable of. They also adapt the Datalog solver to derive fragments of the derivation tree. Again,

our approach does not require extending the Datalog solver. Explain is capable of supporting

aggregation. Our formalization does not consider aggregation, but we support it because the

Datalog solver IncA we use supports recursive lattice-based aggregation [Szabó et al. 2018].

Caballero et al. [2008a,b] propose algorithmic debugging for Datalog programs. They derive

a computation graph representing the evaluation of a Datalog query where the nodes represent

predicate tables for a specific query and the edges determine which queries are needed to derive the

predicate table. Their approach traverses the computation graph and ask the user if stored predicate

table is valid to identify buggy vertices or buggy circuits. A node of the computation graph is

buggy if the predicate table is non-valid while all predicate tables of the immediate descendants are

valid. A buggy circuit is a cycle in the computation graph where all vertices are invalid. Köhler

et al. [2012] propose a similar approach, that is declarative debugging, since they also derive a

graph connecting tuples with rule firings. They use Statelog [Lausen et al. 1998] to record in which

iteration and how often a tuple has been derived. Based on the graph it is possible to extract and

explore subgraphs with pre-defined and ad hoc defined queries such as counting rule firings. In

contrast, our approach does not follow algorithmic or declarative debugging. We propose to follow

the computation model of a Datalog program instead. That is, we follow the execution trace of a

top-down evaluation while utilizing a bottom-up derived database to answer step-overs efficiently.

Soufflé’s debugging approach scales to large deductive databases [Zhao et al. 2020]. Soufflé

introduce a new provenance lattice that stores derivation annotations including the rule deriving
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the tuple and what the minimal height of the derivation tree deriving the tuple is. Additionally,

they describe a new bottom-up evaluation semantics that derives tuples of the provenance lattice.

This enables them to construct derivation trees of minimal height in the presences of recursive

Datalog programs. Their approach requires a complete tuple to construct a derivation tree. In

contrast, our approach allows to explore the reduction trace of partial tuples. They also support

answering the question of why a tuple was not derived but it requires user-interaction. However, it

is a semi-automated approach where the user has to select the rule that should have derived the

tuple and provide a substitution for free variables within the select rule. Our approach is completely

automated in the sense that we just follow the reduction trace of an unsatisfiable query.

ViatraQuery uses slicing of a rete network to identify faulty nodes [Ujhelyi et al. 2016]. Vi-

atraQuery is the Datalog solver we use for bottom-up evaluation. Their approach identifies a

sub-network in addition to inputs that derive or do not derive a specific tuple. That enables to

pinpoint errors in the rule definitions. Our approach also only explores Datalog predicates that

contribute to answer the initial query. Because they identify a sub-network of the rete network, it is

not easily possible to provide a mapping from the Datalog frontends to the sub-network and back.

9 CONCLUSION
Current Datalog debugging techniques are based on the view of Datalog as a query language for

databases where they use provenance information and follow the data instead of the program

execution. In recent years, Datalog has been used as a programming language instead. In this paper,

we propose an interactive debugging technique for Datalog programs that follows a top-down

evaluation strategy while exposing the execution state. We define the top-down evaluation strategy

as a small-step operational semantics where each application corresponds to a step-into interaction.

We base the small-step operational semantics on the evaluation strategy recursive query/subquery.

While recursive query/subquery is not novel [Vieille 1986], we are the first to define a small-step

operational semantics formulation of it. This semantic artifact will help substantiate programming-

language research on Datalog. Top-down evaluation of Datalog is less efficient than bottom-up

semantics, hence all state-of-the-art Datalog solvers use semi-naïve evaluation. Thus, simulating

step-over using only step-into interactions is highly inefficient. We propose to define a hybrid

semantics that combines top-down and bottom-up evaluation. To this end, we can access the bottom-

up derived database when stepping over a predicate call. In particular, we use an incremental Datalog

solver to allow for debugging fixpoint iteration efficiently. We implement the interactive debugger

based on the small-step operational semantics within the IncA framework [Szabó et al. 2021]. Our

implementation allows for setting breakpoints as well. We enable debugging frontends that compile

to core Datalog such as Soufflé and functional IncA by lifting and lowering intermediate terms

back and forth. In future work we want to explore how we can extend the interactive debugger

with condition breakpoints to explore specific evaluation points more efficiently. The performance

evaluation shows that top-down debugging of Datalog programs is feasible when using a hybrid

top-down semantics to efficiently answer step-over interactions.
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