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Abstract
Incremental computations react to input changes by updat-
ing their outputs. Compared to a non-incremental rerun,
incremental computations can provide order-of-magnitude
speedups, since often small input changes trigger small out-
put changes. One popular means for implementing incremen-
tal computations is to encode the computation in Datalog, for
which efficient incremental solvers exist. However, Datalog
is very restrictive in terms of the data types it can process:
Atomic data organized in relations. While structured tree
and graph-shaped data can be encoded in relations, a naive
encoding inhibits incrementality. In this paper, we present an
encoding of structured data in Datalog that supports efficient
incrementality such that small input changes are expressible.
We explain how to efficiently implement and integrate this
encoding into an existing incremental Datalog engine, and
we show how tree diffing algorithms can be used to change
the encoded data.

CCS Concepts: • Information systems → Relational
database model; Semi-structured data.

Keywords: incremental computing, Datalog, structured data,
relational encoding
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1 Introduction
Incremental computations allow for dramatic performance
speedups. Rather than rerunning a computation when its
input changes, an incremental computation processes the
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change and updates its output by reusing intermediate re-
sults and only recomputes intermediate results that are ef-
fected by the change [24]. This is beneficial in many scenar-
ios, namely when input changes are small (compared to the
complete input) and they trigger output changes that are
also small (ideally, proportional to the input change) which
can lead to significant performance improvements over a
complete re-computation. For example, incremental parsers
react to the change of individual tokens to update the gen-
erated syntax tree [32], incremental program analyses react
to changes of individual nodes of a syntax tree to update
the analysis results [28–30], and incremental build systems
react to the change of individual files to update the gener-
ated build artifacts [8, 15]. All these scenarios exploit the
principle of inertia: Computations continue to yield similar
outputs when their inputs change over time [10, 20].
There are different ways to realize incremental computa-

tions; this paper focuses on incremental computations real-
ized in Datalog. Datalog is a logic programming language
that was originally designed to formulate queries in deduc-
tive databases [19]. However, Datalog has become quite
popular in recent years for solving a wide range of prob-
lems [13], from program analysis, to network monitoring
and distributed computing. Unfortunately, most of these us-
ages do not exploit one of Datalog’s most unique features:
incrementality. Datalog’s incremental semantics is known
since the 1990s [11], yet only few modern Datalog imple-
mentations support incrementality today [25, 29, 34]. And
even when incrementality is supported, it is not obvious how
users can exploit it.

The problem is that Datalog can only process relations of
atomic data, while many computations operate on structured
data. To process structured data in Datalog, we must encode
the data in flat relations, that is sets of tuples. Unfortunately,
existing encodings inhibit efficient incrementality because
small changes in the structured data require relatively large
changes in the relations. For example, consider we want to
implement a control-flow analysis in Datalog for the program
in Figure 1. The analysis operates on the parsed syntax tree
of the program, which we must encode into relations.

Figure 2 illustrates a possible encoding of the unchanged
syntax tree as flat relations. For example, the relation Statement

contains tuples for each statement of all methods in the pro-
gram. This encoding is similar to the Java bytecode encoding
used by Doop, a state-of-the-art analysis platform imple-
mented in Datalog [5]. We also show the derived relation
CfgEdge that represents the control-flow graph (CFG) of the
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class App { // change 1: rename App to Application

// change 2: replace void by int

public void run(int i) {

int x = i;

while (x >= 0) {

// change 3: insert System.out.println(x);

if (x % 2 == 0) {

x = x - 2;

} else {

x = x - 1;

}}}}

Figure 1. Simple Java program and 3 incremental changes.

program as computed by our Datalog analysis. However, this
encoding is ill-suited for incremental computing. Consider
three possible changes of the program:
1. Rename of the class App. Since the class name occurs as part

of unique IDs for methods and statements throughout the
encoding, a renaming of App requires almost all tuples to be
modified. An incremental Datalog engine must delete all
information derived about App including those in CfgEdge

and then re-derive all that information again.
2. Change the return type of method run. Since relation

Method contains all information about methods, we must
delete the old tuple of run and insert a new one with the
updated return type. Even though the return type does
not influence the CFG, our Datalog analysis must process
the replaced tuple carefully to discover that the CFG is
unaffected. Generally, large compound tuples hamper in-
crementality because the entire tuple has to be replaced
even if just one element changes.

3. Insert a println statement at the beginning of the while-
loop (index 3). Since the encoding uses absolute indices for
statements, the indices of all subsequent statements have
to be incremented. For an incremental Datalog engine, this
is equivalent to deleting those statements and reinserting
them at a different position. In our example, we would
have to recompute all but the very first CfgEdge tuples.

In this paper, we present an encoding of structured data in
Datalog that enables efficient incremental updates. Our en-
coding supports incremental changes like those described
above by (i) avoiding context-sensitive unique IDs, (ii) avoid-
ing large compound tuples, and (iii) avoiding absolute posi-
tioning. Specifically, we show how our encoding supports
arbitrary tree and list data. We have implemented our encod-
ing as part of the incremental Datalog engine IncA [28–30]:
Users provide structured input data, which we translate into
flat relations for IncA to process. As part of this, we developed
efficient index structures for relations that encode structured
data and demonstrate how to use tree diffing algorithms to
trigger incremental updates of the encoded data.

ClassType(name) = [

"App"

]

Method(uid, name, params, class, type) = [

("App.run(int)", "run", "(int)", "App", "void")

]

Statement(method, index, uid) = [

("App.run(int)", 1, "App.run(int)/assign/1"),

("App.run(int)", 2, "App.run(int)/while/1"),

("App.run(int)", 3, "App.run(int)/if/1"),

("App.run(int)", 4, "App.run(int)/assign/2"),

("App.run(int)", 5, "App.run(int)/else/1"),

("App.run(int)", 6, "App.run(int)/assign/3")

]

// derived relation

CfgEdge(method, fromStmIndex, toStmIndex) = [

("App.run(int)", 1, 2),

("App.run(int)", 2, 3),

("App.run(int)", 3, 4),

("App.run(int)", 3, 6),

("App.run(int)", 4, 2),

("App.run(int)", 6, 2)

]

Figure 2. Tabular encoding of the program from Figure 1.

In summary, we present the following contributions:
• An encoding of structured data in Datalog that supports
efficient incremental updates (Section 3).

• An implementation of efficient indices to answer Datalog
queries against encoded structured data (Section 4).

• A processor that translates tree-diffing patches into up-
dates of the encoded data (Section 5).

Our encoding has been tested and refined for the last 6 years
and various case studies showcase the efficient incremental-
ization our encoding enables. We report on these case studies
in Section 6, but they have been previously published.

2 Background on IncA
IncA is an incremental Datalog platform implemented in
Scala2 that we extend to support the efficient incremental
processing of structured data. This section describes the
architecture of IncA and explains how users interact with
an incremental Datalog solver. This background knowledge
is required for understanding where and how to support
structured data in IncA.

Architecture. We show the architecture of IncA in Fig-
ure 3, which consists of a compiler frontend, a compiler back-
end, and a runtime system. The frontend provides different
user-facing languages to describe programs with Datalog-
style least-fixpoint semantics. In particular, the constraint
language resembles traditional Datalog [30], whereas the
functional language promotes the definition of recursive func-
tions [21]. All frontend languages must compile to IncA’s

21



Incremental Processing of Structured Data in Datalog GPCE ’22, December 06–07, 2022, Auckland, New Zealand

IncA BackendIncA Frontend IncA Runtime
up-

dates

trigger
changes

generate

optimize

genetate Computation 
Network

Functional
Language

Constraint
Language

Datalog
IR

change
input

observe
output

EDB

IDB

Figure 3. The architecture of IncA. Yellow boxes represent computations, red boxes represent input and output data.

intermediate representation (IR), which consists of plain Dat-
alog with a few extensions: stratified negation, user-defined
data types, and user-defined recursive aggregation [28]. The
architecture is open for extension: For example, there also is a
frontend that compiles Soufflé-style Datalog [26] to IncA’s IR.

The compiler backend optimizes the Datalog IR generated
by the frontends. Optimizations include constant folding,
constant propagation, and inlining. After optimization, the
backend generates code for a target platform to execute. The
primary target platform of IncA is Viatra, which implements
incremental processing through a computation network [31].
We will focus on how to provide structured data for Viatra
in the remainder of this paper. However, the architecture is
open and our encoding is applicable to other target platforms,
for example, IncA can translate the IR to code that can be
run by Soufflé.

Incremental user interaction. A Datalog program con-
sists of logical rules that express implications. For example,
consider the standard path example:

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

This program computes the transitive closure path of a re-
lation edge: (i) If there is an edge from X to Y, then there is
a path from X to Y. (ii) If there is an edge from X to Z and if
we already have found a path from Z to Y, then there also is
path from X to Y. That is, this program computes tuples of a
relation path given tuples of a relation edge as input.
In Datalog lingo, input relations define an extensional

database (EDB), whereas the computed relations define an
intensional database (IDB). When using a non-incremental
Datalog solver, users must provide the EDB before execution
and get back the IDB after execution. However, with an
incremental Datalog solver, the user interactions become
more interesting as shown on the right end of Figure 3.

With an incremental Datalog solver, users load a Datalog
program with an initial EDB that is usually empty. For IncA,
the Datalog solver instantiates a computation network that
awaits user input. Users can then continuously provide EDB

changes, which the computation network processes to up-
date the IDB. The user can observe those changes in form of
deletions and insertions of tuples in the IDB. For example,
consider the following incremental user interactions with
the path program (+ is tuple insertion, - is tuple deletion):

+edge(1,2) => +path(1,2)

+edge(2,3) => +path(2,3), +path(1,3)

+edge(3,1) => +path(3,1), +path(2,1), +path(1,1),

+path(2,2), +path(3,3)

-edge(3,1)

+edge(2,1) => -path(3,1), -path(3,3)

Datalog interactions are inherently relational: tuple inser-
tions and deletions. How can users provide and change non-
relational data such as structured data?

Problem statement. We want to exploit Datalog’s incre-
mentality for all kinds of computations, including those that
process structured data (e.g., program analyses). To this end,
we must solve two challenges. First, we must find a relational
encoding of structured data so that we can represent struc-
tured data in the EDB. Second, when the structured data
changes, we must translate those changes into tuple inser-
tions and deletions in the EDB. All the while, our encoding
must not inhibit the incremental performance. That is, the
encoding and the change translation may not increase the
computational complexity of the incremental Datalog solver.

3 Encoding of Structured Data
When encoding structured data for an incremental Datalog
solver, we must submit to one rule: Small changes in the
structural data must translate to small changes of the EDB. In
the remainder of this section, we show how to support three
kinds of structured data: tree-shaped data, optional data, and
lists. We follow three design principles in our encoding:

(i) Use context-insensitive unique identifiers.
(ii) Use unary and binary relations only.
(iii) Use relative positioning for list elements.
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3.1 Encoding Trees
Weuse the following data type (in Scala3 syntax) as a running
example to explain the relational encoding of trees:
enum Exp:

case Num(value: Int)

case Add(left: Exp, right: Exp)

For example, the tree Add(Num(5), Num(3)) has an addition as
root node with Num(5) as left subtree. We assign each node
a unique ID, so that we can refer to and update it directly
without any navigation through the tree. We annotate IDs
as subscripts in our examples: Add#1(Num#2(5), Num#3(3)).

Our unique IDs are atomic and do not contain any context-
sensitive information. This is important because it allows a
tree to change independently from its context and vice versa.
For the Java example from Section 1, we can rename a class
without requiring changes to any of the contained trees that
describe fields and methods. And conversely, we can move a
tree to another context (e.g., another class) without updating
its unique IDs. We show an example of such update below.
Unique IDs have an additional benefit: We can use them

as keys in our relational encoding. Specifically, we encode
trees using two families of relations: one that enumerates
all nodes of a given type, and one that enumerates all links
given a type and a field name:

Nodetype ⊆ UID
Linktype.fieldname ⊆ UID × (UID ∪ Value)

For each node type 𝑇 , we collect the unique IDs of nodes in
Node𝑇 . For our example data type, these are three relations
NodeNum, NodeAdd , and NodeExp , where the latter subsumes
the former two due to subtyping. Datalog programs can
query these node relations to emulate pattern matching.

To encode the shape of a tree, we use a binary link relation
for each field. For each node type 𝑇 and fld, we collect the
links between a node and its field value in LinkT .fld . The
value of a field is either a primitive Value such as Int, or
another node identified by its unique ID. Datalog programs
can query these link relations to traverse structured data.

Using our node and link relations, we can encode the tree
Add#1(Num#2(5), Num#3(3)) using the following Datalog tuples:

NodeAdd (#1) NodeNum (#2) NodeNum (#3)
NodeExp (#1) NodeExp (#2) NodeExp (#3)
LinkAdd .left (#1, #2) LinkAdd .right (#1, #3)
LinkNum.value (#2, 5) LinkNum.value (#3, 3)

We can query these relations in Datalog code to collect all
numeric literals found in an expression tree:
nums(e,n) :- NodeNum (e), LinkNum.value (e, n).
nums(e,n) :- NodeAdd (e), LinkAdd .left (e, l), nums(l,n).

nums(e,n) :- NodeAdd (e), LinkAdd .right (e, r), nums(r,n).

This program computes a relation nums⊆ UID × Value. If e is a
Num, then we extract its numeric literal stored in field value.
Otherwise, e is an Add and we extract its left (resp. right)

operand and recursively collect its numeric literals. For our
example, this program will derive the following tuples:

nums(#2, 5) nums(#3, 3) nums(#1, 5) nums(#1, 3)
Consider we negate the left-hand operand of our example
tree, resulting in Add#1(Neg#4(Num#2(5)), Num#3(3)). We can rep-
resent this change compactly as tuple updates:
+NodeNeg (#4) +NodeExp (#4)
−LinkAdd .left (#1, #2) +LinkAdd .left (#1, #4) +LinkNeg.e (#4, #2)

The first, second, and last tuple change are responsible for
loading the new Neg node. The amount of tuple changes
needed for loading a new tree is proportional to its size. The
other two changes manipulateAdd .left of Add#1 to replace the
old operand by the new negation node. For updating existing
nodes, the amount of tuple changes needed is proportional to
the number of node changes in the structured data. Overall,
this means that our encoding translates small changes in the
structural data to small changes of the EDB.

3.2 Encoding Optional Data
Structured data regularly makes use of optional elements.
For example, consider a lambda expression with an optional
type annotation:

case Lam(param: String, ty: Option[Type], body: Exp)

We model optional data as fields whose value may be unde-
fined. That is, if #1 is a Lam node, then (#1, 𝑣) ∈ LinkLam.ty
may be undefined for all 𝑣 , meaning there is no type annota-
tion present.
There are two concerns we must discuss: (i) what is the

semantics of a field being undefined, and (ii) how can a
Datalog program test the definedness of a field. To illustrate
these concerns, consider the following Datalog rule, which
type checks a lambda expression:
tcheck(ctx, e) :- NodeLam (e), LinkLam.ty (e, t),

LinkLam.param (e, x), LinkLam.body (e, b),
bind(ctx, x, t, ctx'), tcheck(ctx', b).

The second call in the body of this rule queries the optional
ty field, which may be undefined. Fortunately, the standard
Datalog semantics dictates the correct semantics: When a
subquery fails, then the entire rule is aborted and does not
yield any outputs. That is, if ty is undefined, then the query
LinkLam.ty (e, t) fails, and thus the entire rule fails as desired.
Hence, the query of LinkLam.ty tests for the definedness of
that field. To allow users to test if a field is undefined, we
add synthesized undefLink relations into the EDB:
tcheck(ctx, e) :- NodeLam (e), undefLinkLam.ty (e),

infer(ctx, e).

We synthesize undefNode and undefLink for all node types
and all fields. As we will explain in Section 4, these relations
can be efficiently implemented as database views, that is,
without any memory overhead.
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3.3 Encoding Lists
At last, we encode lists as relations. Consider an additional
Exp case for calls with multiple arguments:

case Call(f: String, args: List[Exp])

One option for handling lists is to represent them as stan-
dard structured data using Cons and Nil nodes. However, we
would have to load and incrementally maintain a Cons node
for each list element. Moreover, the Cons nodes would be vis-
ible to Datalog developers, for example, when querying the
parent of a node. Alternatively, we could model a list node
and assign indices to the list elements, similar to an array.
However, as we have discussed in Section 1, this encoding
inhibits incrementality, because deleting or inserting a list
element affects the indices of all subsequent elements.
We propose an encoding that behaves like a linked list,

but does not require explicit Cons nodes. To achieve that, we
introduce two special relations:

#first ⊆ UID × UID #next ⊆ UID × UID

Relation #first associates a list node to its first list element;
#first is undefined if a list is empty. And for each list element,
relation #next associates it to the subsequent list element.
For example, we encode the program
Call#1("f", List#2(Num#3(5), Num#4(3), Num#5(7)))

as the following Datalog tuples:

NodeCall (#1) NodeExp (#1) LinkCall.f (#1, "f")
// Node and Link tuples for Num nodes #3,#4,#5 elided

NodeList [Exp] (#2) LinkCall.args (#1, #2) #first (#2, #3)
#next (#3, #4) #next (#4, #5)

The node with UID #2 is a list node of type List [Exp]. Its first
element is #3 as defined by the #first fact, with subsequent
elements #4 and #5. This encoding is incrementally efficient
in the sense that we can replace, insert, or remove any list el-
ement in constant tuple changes, akin to the corresponding
operations on linked lists. Finally, note that Datalog pro-
grams can query #next in the opposite direction to find a list
element’s predecessor. Thus, in fact, our encoding supports
bidirectional traversals similar to doubly linked lists.

4 Querying Encoded Structured Data
In the previous section, we showed how to encode structured
data in a relation format: To this end, we introduced the
following relations:
• Node relations: Nodetype ⊆ UID
• Link relations: Linktype.fieldname ⊆ UID × (UID ∪ Value)
• First link relation: #first ⊆ UID × UID
• Next link relation: #next ⊆ UID × UID
• Undefined nodes: undefNodetype ⊆ UID
• Undefined links: undefLinktype.fieldname ⊆ UID
The relations above serve as input (EDB) for the incremental
Datalog solver and its computation network. Our encoding

class UnarySetIndex[V]:

private val set: mutable.Set[V]

def entries: Iterable[V] = set

def contains(v: V): Boolean = set.contains(v)

def insert(v: V): Unit =

set += v

notify(v, true)

def delete(v: V): Unit =

set -= v

notify(v, false)

def notify(v: V, isInsert: Boolean): Unit = ...

def addListener(l: Listener): Unit = ...

def removeListener(l: Listener): Unit = ...

Figure 4. Unary set index implementation.

determines how structured data appears in the EDB. The
computation network interacts with the EDB in three ways:
(i) it enumerates tuples of an EDB relation, (ii) it tests the
containment of a tuple in an EDB relation, (iii) it reacts to
the insertion or deletion of a tuple from an EDB relation.
In this section, we explain how these interactions can be
supported efficiently by exploiting invariants of structured
data. Specifically, we introduce data structures called indices
for the EDB that can answer the queries of the computation
network efficiently.

4.1 Node Relations
Nodes are fundamental entities of tree-shaped data. We

encode nodes using node relations in the EDB as explained
in Section 3. Hence, we need to enable efficient querying of
node relations for the computation network. In our encoding,
nodes exhibit an important invariant: each node carries a
unique ID. For the node relations, this means that we do not
need to consider duplicate node IDs and can use a simple set
to store the UIDs of nodes per type.
Figure 4 shows the code of our unary set index. There is

one instance of this class per type. In each type, we store
the contents of the node relation in a mutable set. The index
can answer queries such as enumerating all stored nodes
(entries) and if a node is already indexed (contains).

The EDB will change over time by processing updates of
the input data (details in Section 5). To this end, the index
provides functions insert and delete to alter the underly-
ing mutable set. The computation network installs listeners
on EDB relations to be notified about changes. Our unary
set index notifies these listeners when a node is inserted
or deleted by calling notify. The first argument of notify

states the value that the change is about and the second ar-
gument informs the listeners if the change was an insertion
(isInsert = true) or a deletion (isInsert = false). Since nodes
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trait BinaryIndex[K, V]:

def entries: Iterable[(K, V)]

def index(k: K): Iterable[V]

def indexInverted(v: V): Iterable[K]

def contains(k: K, v: V): Boolean =

index(k).exists(_ == v)

def insert(k: K, v: V): Unit

def delete(k: K, v: V): Unit

def notify(k: K, v: V, isInsert: Boolean): Unit = ...

def addListener(l: Listener): Unit = ...

def removeListener(l: Listener): Unit = ...

Figure 5. Generic binary index interface.

are uniquely identified, double insertions or double deletions
cannot occur and do not have to be prevented.

4.2 Link Relations
We encode the shape of structured data using link relations
in the EDB as explained in Section 3. Given a type and field
name, the link relations associate nodes with other nodes
or with primitive values. To efficiently implement indices
for link relations, we need to identify invariants that we can
exploit to detect and propagate changes.

As first invariant, we observe that the target of a link is al-
ways uniquely determined by the containing node. Formally,
given a node 𝑛, a type 𝑇 , and a field fld, then

|{𝑡 | (𝑛, 𝑡) ∈ LinkT .fld}| ≤ 1.
That is, a field’s value is either undefined or definite; there
cannot be multiple values assigned to a single field of a node.
However, the computation network may also query the link
relation in reverse order: given a link target, what are the
nodes that point there? In this direction, the link relations do
not provide a strong invariant. For example, the following
tree Add#1(Num#2(3), Num#3(3)) contains the integer value 3
twice, as target of #2 and #3. But this is only a problem for
primitive values, which are not unique.

To implement link relations efficiently, we split them apart.
We distinguish node link relations (targeting nodes) from
value link relations (targeting primitive values). Node link
relations range over𝑈 𝐼𝐷 ×𝑈 𝐼𝐷 whereas value link relations
range over𝑈 𝐼𝐷 ×𝑉𝑎𝑙𝑢𝑒 . This separation is always possible
for well-sorted trees, where a field targets a statically known
type: either a node or a value. Now we can observe a second
invariant for node link relations: the target of a link uniquely
determines the containing node. This invariant does not hold
for value link relations.

Due to these invariants, we can implement:
• node link relations as one-to-one indices and
• value link relations as many-to-one indices.
These indices share a common interface presented in Figure 5.
The interface provides the same functionality as UnarySetIndex

class OneToOneIndex[K, V] extends BinaryIndex[K, V]:

private val biMap: mutable.BiMap[K, V]

def entries: Iterable[(K, V)] = biMap.entries

def index(k: K): Iterable[V] = biMap.get(k)

def indexInverted(v: V): Iterable[K] =

biMap.getInverse(v)

def insert(k: K, v: V): Unit =

biMap.put(k, v)

notify(k, v, true)

def delete(k: K, v: V): Unit =

biMap.remove(k)

notify(k, v, false)

class ManyToOneIndex[K, V] extends BinaryIndex[K, V]:

private val forward: mutable.Map[K, V]

private val backward: mutable.MultiMap[V, K]

def entries: Iterable[(K, V)] = forward.entries

def index(k: K): Iterable[V] = forward.get(k)

def indexInverted(v: V): Iterable[K] = backward.get(v)

def insert(k: K, v: V): Unit =

forward.put(k, v)

backward.put(v, k)

notify(k, v, true)

def delete(k: K, v: V): Unit =

forward.remove(k)

backward.remove(v, k)

notify(k, v, false)

Figure 6. Binary one-to-one and many-to-one indices.

such as enumerating all elements as well as registering and
notifying listeners but for binary tuples. Additionally, it pro-
vides two functions that answer directional queries. The
function index gives all values that have k as key whereas
indexInverted returns all keys where v is the value. The con-
crete implementations of these two functions will directly
make use of the two invariants of binary relations.
We show both implementations in Figure 6, utilizing the

respective invariants. We implement OneToOneIndex that ex-
ploits the one-to-one mapping between keys and values.
To exploit the invariant, we use a bidirectional map that
maintains an inverse view of the data to store a one-to-one
mapping efficiently. We implement ManyToOneIndex that ex-
ploits the many-to-one mapping between keys and values.
That is, a key uniquely identifies its value, but a value may
be contained by multiple keys. To exploit this invariant, we
use a forward-directed map to answer index queries and a
backwards-directed multimap for indexInverted queries.

4.3 Optional and List Relations
We encode optional data as links with undefined targets. We
already took this into consideration when we defined the
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class UndefNode(tyNodes: UnarySetIndex,

allNodes: UnarySetIndex):

def entries: Iterable[UID] =

allNodes.entries.diff(tyNodes.entries)

def contains(k: UID): Boolean =

!tyNodes.contains(k)

allNodes.addListener((v: URI, isInsertion: Boolean) =>

if (!tyNodes.contains(v))

notify(v, isInsertion)

)

Figure 7. Index undefNode reacts to allNodes changes.

one-to-one and many-to-one indices above, where index and
indexInverted may yield empty results. Thus, no additional
handling is needed to support optional data.
To encode lists, we use #first and #next relations. They

also exhibit strong invariants: Each list has at most one first
element and each node can only be the first element of a
single list only. Hence, we can use our one-to-one index to
implement the #first relation. Moreover, each node can only
be the successor of a single list predecessor, so that we can
use the one-to-one index for the #next relation, too.

4.4 Virtual Indices
The goal of our indices is to enable efficient querying of
structured data encoded in the EDB. However, sometimes it
is not necessary to materialize the structured data explicitly.
We found that we can answer queries for the relations un-
defNode and undefLink by relying on other EDB relations
without storing extra data. In databases, this would be called
a view. We implement views with what we call virtual indices.
A virtual index supports the same interactions as other

indices: enumeration, containment, and incremental updates.
However, it does so by delegation to other EDB indices. For
example, consider the undefNode relation. For each type 𝑇 ,
undefNodeT contains all nodes not of type 𝑇 . Rather than
storing all these nodes explicitly, we can answer queries for
this relation indirectly as shown in Figure 7.
The virtual index UndefNode takes two other indices as in-

put: one containing all nodes of type 𝑇 and one containing
all nodes. The nodes not of type 𝑇 can then be computed
as the difference of all nodes and the nodes of type 𝑇 . For
containment, we only need to test tyNodes, because the mem-
bership in allNodes is implicit. However, the most interesting
and complicated part of virtual indices concerns the handling
of incremental updates. To this end, we install two change
listeners in other relations. When allNodes changes, we prop-
agate the change if the changed node is not of type𝑇 . A new
node will become part of the UndefNode relation if and only if
it is not of type 𝑇 . Note that we do not observe changes in
tyNodes, because the type of a node can not change.

class UndefLink(tyNodes: UnarySetIndex,

links: OneToOneIndex):

def entries: Iterable[UID] =

tyNodes.entries.filter(n => links.index(n).isEmpty)

def contains(k: UID): Boolean =

tyNodes.contains(k) && links.index(k).isEmpty

tyNodes.addListener((v: URI, isInsertion: Boolean) =>

// fields are undefined when a node is (un)loaded

notify(v, isInsertion)

)

links.addListener((v: URI, t: URI, isIns: Boolean) =>

notify(v, !isIns)

)

Figure 8. undefLink reacts to tyNodes and links changes.

type Field = (Type,Link)

class EDB:

val nodes: Map[Type, UnarySetIndex[UID]]

val nodeLinks: Map[Field, OneToOneIndex[UID, UID]]

val valLinks: Map[Field, ManyToOneIndex[UID,Value]]

val first: OneToOneIndex[UID, UID]

val next: OneToOneIndex[UID, UID]

// UndefNode and UndefLink indices

val virtualIndices: Map[VKey, VirtualIndex]

Figure 9. Relational encoding, backed by efficient indices.

Similarly, we can define a virtual index UndefLink that con-
tains all nodes of type 𝑇 with an undefined link fld. This
virtual index listens to two other indices as shown in Fig-
ure 8. When a node is inserted into tyNodes, its links are
undefined by default. Therefore, we notify the listeners of
UndefLinkwhenever tyNodes changes. If later the value of T .fld
is changed by the user, we must update UndefLink accord-
ingly. When a new tuple (𝑣, 𝑡) is inserted into LinkT .fld (the
field is set to a new value), then we must remove 𝑣 from
undefLinkT .fld . Conversely, when a tuple (𝑣, 𝑡) is deleted
from LinkT .fld (the field is undefined), then we must insert 𝑣
into undefLinkT .fld . The links listener captures this behavior.
Virtual indices allows us to implement additional EDB

relations without memory overhead. Note also that there
are no insertion and deletion functions in virtual indices,
because they do not store data themselves.

4.5 Summary
We have now presented all indices required to implement

our encoding of structural data as an EDB. We summarize
the EDB definition in Figure 9. Note how node relations are
indexed by the node type and link relations are indexed by
the node type and link. In our implementation, indices are
instantiated on-demand when they are first needed. For node
relations, we use the unary set index. For binary relations
with a one-to-one invariant, we use the OneToOneIndex. For
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case class EditScript(edits: Seq[Edit])

enum Edit:

case Load(n: Node, ks: Kids, vs: Vals)

case Attach(n: Node, link: Link, p: Node)

case Unload(n: Node, ks: Kids, vs: Vals)

case Detach(n: Node, link: Link, p: Node)

case Update(n: Node, ovs: Vals, nvs: Vals)

type Node = (Type, UID)

type Kids = Seq[(Link, UID)]

type Vals = Seq[(Link, Value)]

Figure 10. The edit script language truechange [9].

binary relations with a many-to-one invariant, we use the
ManyToOneIndex. This indices allow the computation network
to process changes of structural data efficiently.

5 Processing Changes of Structured Data
The EDB implementation describes the structured data in
a relational encoding. To react to input changes, we need
to translate changes of structured data to insertions and
deletions of EDB tuples. To determine changes in structured
data, we use the structural diffing algorithm truediff [9].
truediff generates edit scripts that precisely describe tree-diff
patches, but it also describes how to construct an initial tree
using edits. The runtime of IncA will translate edit scripts to
insertions and deletions of the EDB as we show below. But
first, we introduce the edit script language used by truediff .

5.1 truechange: Structural Edit Scripts
Tree diffing algorithms like truediff generate edit scripts that
describe how a tree was modified. For truediff , the corre-
sponding edit script language is called truechange. truechange
uses UIDs to uniquely identify nodes of abstract syntax trees.
This way, truediff can directly reference changed nodes with-
out requiring navigation through the tree. This design fits
well with the extensional database encoding of structured
data we introduced in Section 3, which also relies on UIDs.
We reiterate the edit script language truechange [9] in

Figure 10. An edit script consists of a sequence of edits. Each
edit is one of five atomic operations: load, attach, unload,
detach or update. Edits reference nodes by the node’s type
together the node’s UID, which we visualize as a subscript.
For example, node Add#1 is a node of type Add with UID #1.

A Load(n,ks,vs) constructs a new node with a new UID and
connects that node with all its child nodes ks and contained
values vs. Note how child nodes and contained values also
provide a link, with which they connect to the newly con-
structed node. An Unload(n,ks,vs) is the dual edit of Load: it
deconstructs a node and disconnects all child nodes, which re-
main loaded. Disconnected nodes can be reattached through
another Load or through Attach. An Attach(n,link,p) connects

node n with the parent node p via link link if that link is cur-
rently unoccupied. Conversely, Detach(n,link,p) disconnects
n from p. At last, an Update(n,ovs,nvs) edit which updates the
old values ovs of the node with new values nvs.
For example, consider the change we have already seen

in Section 3:
Add#1(Num#2(5), Num#3(3))

Add#1(Neg#4(Num#2(5)), Num#3(3))

truediff computes the following truechange edit script:

Detach(Num#2, "left", Add#1)
Load(Neg#4, Seq("e" -> #2), Seq())
Attach(Neg#4, "left", Add#1)

First, we detach node Num#2 from link left of node Add#1. Then
we load a new node of type Neg#4 with node Num#2 attached
at link e. Lastly, we attach the newly loaded node Neg#4 at
the previously freed link left of node Add#1. We process edit
scripts like this in IncA to update the structured data encoded
in the EDB.

5.2 Translating Edit Scripts
The runtime of IncA takes an edit script as input and trans-
lates it to changes of the extensional database. We assume
that the type of the structured data is consistent with the
node and link relations in the EDB: For each node type, there
are corresponding node and link relations in the EDB. The
translation then follows the code in Figure 11.
The EDB provides the function processEditscript, which

processes each edit individually by calling processEdit. The
EDB only notifies the computation network after the whole
edit script has been processed and the EDB has been altered.
The function processEdit handles each of the five edits dif-
ferently. When processing a load edit, we insert the UID of
the node into all supertype node indices. We also insert into
the supertype indices to enable the computation network to
query nodes of all types without requiring extra computation.
Additionally, we need to insert all kids in the corresponding
link index. The same holds for values of the node. Note that
loads of list nodes do not have direct kids and values.
When attaching a node we distinguish between the pro-

vided links. When considering link First, we insert it into
the first index. The same holds for the when encountering
Next. We need to make this distinction because first and next
links are not indexed by the nodes type. If the link is neither
a first or next link, we insert the parent-child pair into the
link relation indexed by the parent’s type and the link itself.
Since Load and Unload are dual edits, we delete instead of

insert into the same indices when encountering an unload
edit. The same reasoning holds for Attach and Detach.
At last, we process the Update edit by deleting all old

values ovs for the respective value link relations and inserting
all new values nvs afterwards. We assume that ovs and nvs

mention the same links.

27



Incremental Processing of Structured Data in Datalog GPCE ’22, December 06–07, 2022, Auckland, New Zealand

def processEditScript(es: EditScript): Unit =

es.edits.foreach(processEdit)

def processEdit(edit: Edit): Unit = edit match

case Load((ty, uid), kids, vals) =>

supertypes(ty).foreach { supty =>

nodes(supty).insert(uid)

}

kids.foreach { case (link, kuid) =>

links(ty -> link).insert(uid, kuid)

}

vals.foreach { case (link, v) =>

valLinks(ty -> link).insert(uid, v)

}

case Attach((nty, nuid), First, (pty, puid)) =>

first.insert(puid, nuid)

case Attach((nty, nuid), Next, (pty, puid)) =>

first.next(puid, nuid)

case Attach((nty, nuid), link, (pty, puid)) =>

links(pty -> link).insert(puid, nuid)

case Unload((ty, uid), kids, lits) =>

supertypes(ty).foreach { supty =>

nodes(supty).delete(uid)

}

kids.foreach { case (link, kuid) =>

links(ty -> link).delete(uid, kuid)

}

vals.foreach { case (link, v) =>

valLinks(ty -> link).delete(uid, v)

}

case Detach((nty, nuid), First, (pty, puid)) =>

first.delete(puid, nuid)

case Detach((nty, nuid), Next, (pty, puid)) =>

first.delete(puid, nuid)

case Detach((nty, nuid), link, (pty, puid)) =>

links(pty -> link).insert(puid, nuid)

case Update((nty, nuid), ovs, nvs) =>

ovs.foreach { case (link, v) =>

valLinks(nty -> link).delete(v)

}

nvs.foreach { case (link, v) =>

valLinks(nty -> link).insert(v)

}

Figure 11. Translating edits to EDB insertions and deletions.

Consider the edit script we have seen in the previous sub-
section. This edit script will be processed into the following
insertions and deletions:

−LinkAdd .left (#1, #2)

+NodeNeg (#4) +NodeExp (#4) +NodeAny (#4)
+LinkNeg.e (#4, #2)

+LinkAdd .left (#1, #4)

We separate the insertions and deletions into three packages
where each package is emitted by one edit. The detach edit

results into a single link relation deletion of Add .left. The
load edit results in three node relation insertions: Neg, Exp,
andAny, one for each supertype ofNeg. Our implementation
assumes that every node type has Any as its supertype. Addi-
tionally, we insert into the link relation of Neg.e. The attach
edit results in another link relation insertion of Add .left.

6 Evaluation
We implemented our encoding for structural data as part
of the incremental Datalog engine IncA. IncA is focused on
static program analysis that processes the abstract syntax
tree of programs. Our encoding was used to represent those
trees and to make incremental changes to them since 2016.
Our encoding has been extensively experimented with and
we have refined it multiple times, as we report below.

6.1 Evolution of IncA
IncA was introduced in 2016 [30] as a constraint language
for incremental static analysis based on Datalog. In 2018,
IncA was extended with user-defined recursive aggregation
by introducing a new incremental algorithm for Datalog [28].
In 2021, this algorithm was refined to improve the scalability
of IncA for whole-program analyses [29]. During this time,
IncA was implemented in the JetBrains Meta Programming
System (MPS) 1, which uses projectional editing. Projectional
editing means that the user edits a view of the program’s
abstract syntax. To change the tree, the user triggers change
requests that are applied to the abstract syntax, which then is
re-projected for the user. Within IncA, these change requests
were translated to trigger corresponding changes in the EDB,
where the encoded structured data resides.

IncAwas reimplemented in Scala as an open-source project
in 2020. Conceptually, the main change is that IncA does
not rely on projectional editing anymore, but uses efficient
tree diffing to trigger concise changes [9]. In Section 5, we
showed how to process tree-diff patches to update the rela-
tional encoding of structured data. The reimplementation
also realizes a number of performance improvements: Com-
piler optimizations like constant folding, constant propaga-
tion, and inlining, and virtual indices in the EDB.

6.2 Performance Evaluation
Our encoding has been used in various IncA performance
experiments. We provide an overview of these experiments
in Figure 12.
The initial IncA paper evaluated the incremental perfor-

mance of IncA on three program analyses for Java and C [30].
These analyses process the structured source-level code di-
rectly, whereas later analyses processed some intermediate
format such as Java bytecode in form of Jimple [17]. In all
cases, the input language was modeled in MPS as abstract
syntax that can be modified programmatically or through

1https://www.jetbrains.com/mps
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Language Analysis Programs Non-inc. time Inc. time Speedup

Java FindBugs mbeddr importer (10k LoC) n/a 7 ms n/a
C flow-sensitive points-to Toyota ITC code2(15k LoC) 5800 ms 23.3 ms 249x
C well-formedness checks Smart Meter (44k LoC) 209 ms 12.8 ms 16.3x
Jimple Strong-update points-to

[
GTruth (9k), Gson (14k), PGSQL
JDBC (45k), BerkleyDB (70k)

]
6500–64300 ms 1–10 ms 650–6430 x

Jimple String analysis 13500–20400 ms 2 ms 6500–10000x
Jimple Constant propagation

[
antlr (22k), emma (26k)
pmd (61k), ant (105k)

]
5000–23000 ms 1–3 ms 1600–7600x

Jimple Interval analysis 3000–23000 ms 1–6 ms 500–3800x
Lambda type checking synthesized code 6/50 ms 44/2 ms 0.14/25x

Figure 12. IncA performance experiments based on our encoding of structured data.

projectional user interactions. The abstract syntax was then
transformed into an EDB schema using the encoding pre-
sented in Section 3.

Except the last one, all analyses were written against the
encoded structured data in Datalog. That is, the analyses
query our Node and Link relations and make use of our op-
tion and list encoding. In contrast, the last analysis was writ-
ten in a type-checking DSL that compiles to Datalog, hiding
the details of our encoding from the developer [22]. In gen-
eral, generating Datalog code seems to become increasingly
popular and is possible for completely unrelated program-
ming paradigms such as functional programming [21].
Unfortunately, there is no standard benchmark for incre-

mental source-code changes. Therefore, the IncA perfor-
mance experiments synthesized changes programmatically,
trying to impact the analysis result in order to challenge
the incremental engine. The evaluation results demonstrate
that our encoding of structured data does not impede in-
cremental performance. Indeed, small source-code changes
were translated into small EDB changes, thus triggering a
minimal incremental update.

7 Related Work
We propose to encode structured data following three prin-
ciples: (i) use context-insensitive unique identifiers to refer-
ence structured data, (ii) only use unary and binary relations
to describe relations between data, and (iii) use relative posi-
tioning to encode list data. In the remainder of this section
we compare our design with related work. Except where we
say so explicitly, the encodings used by related work were
not designed with incremental updates in mind.

Doop is a highly configurable family of points-to analyses
for Java bytecode written in Datalog [5]. We have already
discussed some of Doop’s design decisions for encoding byte-
code in the introduction. Doop uses large compound rela-
tions and context-sensitive identifiers to describe the abstract
syntax of Java bytecode. In contrast, we use only unary and
binary relations to describe tree-shaped data and use atomic
UIDs. Additionally, they use indices to mark the order of list
2https://github.com/regehr/itc-benchmarks

elements such as instructions. We encode lists utilizing first
and next links to express the order of list elements relatively.
QL is an object-oriented language based on Datalog pri-

marily used for static analysis [2]. In the front end, QL
supports several mainstream languages, including e.g. Java,
C/C++, Ruby, and Python. For each one of these languages,
a database schema is defined that determines how the EDB
structure looks like. For some of the languages, the schema
is defined by hand, while for others it is automatically gener-
ated from the corresponding TreeSitter grammar. However,
it is true in general that the schemas are not compatible
with incrementalization because many of the EDB relations
use positional information about AST nodes (e.g. index of
an argument in a function call) or identifiers that are gen-
erated in a context-sensitive manner. In contrast, we store
contextual information (e.g., the parent node) in separate
relations, so that a node remains stable when it’s moved and
less information has to be re-derived.

bddbddb [16, 33] is a Datalog engine that represents rela-
tions as binary decision diagrams (BDDs). BDDs allow the
concise representation of relations with efficient storing and
querying. Their work focuses on program analysis and they
encode abstract syntax using flat relations. However, they do
not follow our design principles as they not only use unary
and binary relations to describe the abstract syntax, and they
use absolute positioning to encode lists.
DIMPLE [4] and Eichberg et al. [7] use tabled Prolog to

describe static analyses, where the latter also supports in-
crementality. They use nested constructors to describe the
abstract syntax. While this is possible when using Prolog,
we focus on using Datalog to incrementalize computations,
which requires flat relations containing primitive data such
as strings, integers, and booleans. Eichberg et al. [7] also uses
absolute position indices to encode the instruction ordering,
while our approach uses first and next links.

Soufflé is a Datalog framework consisting of a Datalog lan-
guage and a solver [26]. Recently, Soufflé investigated how
to add elastic incrementalization to their solver [34]. Elastic
incrementalization reacts based on the impact of the change:
Small impact changes trigger incremental updates, and high
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impact changes trigger complete re-computation. In evaluat-
ing the incremental performance, Soufflé used Doop analyses
as a benchmark including the Doop encoding of structured
data. However, they did not map actual code changes to EDB
updates, which would inhibit the incremental performance
as we explained above. Instead, they modified individual
EDB tuples directly, although this does not correspond to
any actual code change. We expect that Soufflé could use our
encoding of structured data to improve their incremental
performance on real code changes.
The work on query shredding [6, 14, 27] tackles a prob-

lem of nested queries over nested data in the form of bags.
These queries return nested data itself. In our work we only
consider nested data in the form of tree-shaped data that is
the input of Datalog programs. Our work does not focus on
generating tree-shaped data during the evaluation of Datalog
programs. The derived tuples can reference tree-shaped data
in the form of unique identifiers, but these unique identifiers
only ever reference tree-shaped data that is part of the ex-
tensional database. Hence, we do not encounter the problem
of deep updates that query shredding tries to solve.

TreeToaster [3] proposes to implement compiler optimiza-
tions by applying incremental view maintenance on abstract
syntax trees (ASTs) for pattern rewritings. They encode ASTs
using relations as well. They also identify AST nodes with
unique identifiers. However, they use n-ary tuples to describe
ASTs nodes. We propose to only use at most binary relations
to encode tree-shaped data to enable small insertions and
deletions when editing a single child node. TreeToaster does
not allow recursive pattern matches while we integrated
our work with state-of-the-art Datalog solvers which allow
processing highly recursive Datalog programs and terminate
even in the presence of cyclic data.

Adapton [12] is a general-purpose programming language
to describe incremental computations. The language is ML-
like and supports algebraic data types to encode structured
data. While it is natural for Adapton to describe structured
data, the challenge they encounter is to incrementalize com-
putations. Our work uses Datalog which has an incremental
semantics since the 1990’s [11]. In contrast, describing struc-
tured data in Datalog is not natural and, in particular, it is not
obvious how to describe structured data such that it enables
efficient incremental performance. Hence, our work tackles
incremental computing from a different angle.
There are other incrementalization techniques such as

memoization [1, 18, 23]. Memoization reuses a result when
the input of a function does not change, even if the changed
part of the input does not contribute to the result. Hence,
if one part of the structured data changes, memoization re-
quires to redo the computation. In contrast, Datalog is more
fine-grained in the incremental update propagation and our
encoding of structured data retains this granularity. That is,
we only update a computation’s result if relevant parts of
the input data changes.

8 Conclusion
In this paper, we showed how to process structured data in
Datalog incrementally. Specifically, we presented an encod-
ing of structured data in flat relations that is amenable to
incremental updates such that small changes to the struc-
tured data translate to small changes of the relations. In
doing so, we discovered and followed three design princi-
ples: (i) use context-insensitive unique identifiers, (ii) use
unary and binary relations only, and (iii) use relative posi-
tioning for list elements. We also showed how to implement
the relations required by our encoding efficiently, exploiting
invariants about the structural data to optimize time and
memory. Finally, we explained how users can provide and
update the encoded structural data using the tree-diffing al-
gorithm truediff , which finds structural differences between
trees efficiently and describes them concisely. Our encoding
has been part of the IncA framework since 2016, but this
paper presents its first systematic description.
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