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Abstract

Incremental static analyses provide up-to-date analysis re-
sults in time proportional to the size of a code change, not
the entire code base. This promises fast feedback to program-
mers in IDEs and when checking in commits. However, ex-
isting incremental analysis frameworks fail to deliver on this
promise for whole-program lattice-based data-flow analyses.
In particular, prior Datalog-based frameworks yield good
incremental performance only for intra-procedural analyses.
In this paper, we first present a methodology to empiri-

cally test if a computation is amenable to incrementalization.
Using this methodology, we find that incremental whole-
program analysis may be possible. Second, we present a new
incremental Datalog solver called Laddder to eliminate the
shortcomings of prior Datalog-based analysis frameworks.
Our Datalog solver uses a non-standard aggregation seman-
tics which allows us to loosen monotonicity requirements
on analyses and to improve the performance of lattice aggre-
gators considerably. Our evaluation on real-world Java code
confirms that Laddder provides up-to-date points-to, con-
stant propagation, and interval information in milliseconds.

CCS Concepts: • Software and its engineering→ Auto-

mated static analysis.
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1 Introduction

Incremental static analyses provide up-to-date analysis re-
sults by processing code changes. They adapt previously com-
puted analysis results to reflect the changed code. Compared
to reanalyzing the entire code base from scratch, incremental
analyses usually yield results orders of magnitudes faster,
namely in time proportional to the size of the code change.
This is why all modern IDEs include and continuously run
incremental analyses: type checkers, code smell detectors,
dead code analyses, and more.

The development of a correct incremental analysis is chal-
lenging, since it must yield the exact same results as a non-
incremental analysis would. Specifically, the incremental
analysis must precisely track dependencies between pro-
gram elements such that it can invalidate and recompute
all previous results affected by a code change. IDEs tend
to use one-off algorithms to achieve this, which entails a
significant development effort. Frameworks for incremental
static analyses aim to relieve developers from this burden
by automatically incrementalizing a non-incremental anal-
ysis specification. For example, Reviser [3] incrementally
executes distributive analyses and Infer [8] incrementally
executes compositional analyses. Both approaches rely on
method summaries, exploiting distributivity and composi-
tionality respectively. The goal of this paper is to provide
automatic incrementalization for static analyses that are not
necessarily distributive or compositional, and to make them
fast enough to run inside IDEs.

Datalog-based analysis frameworks encode static analyses
as Datalog rules. They rely on Datalog’s relational fixpoint se-
mantics rather than method summaries and therefore do not
assume the analysis is distributive or compositional. For ex-
ample, Doop [34] implements highly precise whole-program
points-to analyses for Java in Datalog. However, Doop tar-
gets the non-incremental Datalog solver Soufflé [17]. In con-
trast, IncA [37] compiles analysis specifications to be solved
by the incremental Datalog solver Viatra Query [39]. This
way, IncA has been used to realize incremental points-to
analyses [37], interval and string analyses [36], and type
analyses [27]. However, the literature on IncA only demon-
strates millisecond update times for intra-procedural analy-
ses. When we benchmarked IncA on one of Doop’s whole-
program points-to analyses, we discovered that IncA fails to
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scale. Specifically, even small changes of the analyzed pro-
gram regularly led to update times comparable to a complete
reanalysis of the program.
In this paper, we tackle this problem in two ways. First,

we develop an empirical methodology to help us estimate if a
computation is inherently incompatible with incrementaliza-
tion. For whole-program analyses, if a small program change
invalidates most previous analysis results, efficient incremen-
talization must fail. However, we find that such high-impact
changes are rare and efficient incrementalization thus may
be possible, although IncA does not achieve it. Second, we
investigate the performance issues of IncA and identify two
problems in IncA’s Datalog solver: unnecessary recomputa-
tions after deletions and overly strict monotonicity require-
ments for analysis specifications. Both impact performance
significantly. To solve these problems, we design and imple-
ment a new incremental Datalog solver called Laddder that
can be used as a drop-in replacement in IncA. Laddder is
based on differential dataflow (DDF) [16, 22, 31], a generic
computational model for incrementalizing dataflow-based
fixpoint computations.
The key contribution of this paper is a novel aggrega-

tion semantics for DDF that supports incremental recursive
aggregation, which is required for joins and meets in lattice-
based data-flow analyses. What makes efficient incremental-
ization of recursive aggregators challenging in DDF is that
DDF maintains a partially ordered set of intermediate com-
putation states. Incremental aggregators must thus collect
aggregands from and yield results at multiple such states.
We designed data structures that enable efficient incremen-
talization in Laddder by exploiting the algebraic properties
of lattice-based aggregations. Moreover, we provide termina-
tion and correctness guarantees that are valid under relaxed
monotonicity assumptions The implementation of Laddder
is available open source.1

Weevaluate IncAwith Laddder forwhole-programpoints-
to, constant propagation, and interval analyses of Java code
from the Qualitas Corpus [38]. We synthesize random pro-
gram changes that affect the analysis results. While IncA’s
previous Datalog solver required tens of seconds to update
analysis results, Laddder responds to virtually all code
changes within 10 ms. These results confirm that Laddder
provides a practical solution for incrementalizing whole-
program lattice-based program analyses.

In summary, this paper makes the following contributions:
• We identify the challenges that come with the incremen-
talization of lattice-based whole-program analyses and
discuss the limitations of the state of the art (Section 2).

• We present the methodology we used to verify that whole-
program analyses are incrementalizable (Section 3).

• We introduce Laddder, a novel DDF-based evaluator for
Datalogwith lattice-based recursive aggregation (Section 4).

1https://github.com/szabta89/IncA

• We design a novel aggregation architecture for Laddder
that exploits the algebraic properties of lattices to improve
aggregation performance (Section 5).

• We formally define the semantics of Laddder and provide
correctness proofs (Section 6).

• We evaluate the performance of our approach with a
lattice-based inter-procedural points-to analysis on real-
world subject programs (Section 7).

2 Problem Statement

In this section, we review the state of the art of incremen-
tal Datalog-based analyses. While prior research has shown
that incremental Datalog is effective for lattice-based intra-
procedural analyses, we demonstrate that existing approaches
do not scale to whole-program analyses. We discuss other
non-Datalog-based approaches in Section 8.
In this section, we use a simple points-to analysis [33]

as a running example to show that traditional incremental
Datalog solvers do not scale. Points-to analysis is a funda-
mental analysis underpinning many other analyses, such as
control-flow analysis or taint analysis. As demonstrated by
the Doop framework [34], precise inter-procedural points-to
analyses can be implemented in Datalog.

Datalog is a logic programming language [12]. Each Data-
log a rule r has the form a0 :- a1,...,an with head a0
and (possibly empty) body a1,...,an . Atoms ai have the
form R(t1,...,tk), where R is a relation name and ti are
terms. A rule is interpreted as a universally quantified impli-
cation: The substitutions of the variables in the body imply
when the head holds. Given a head atom R(t1,...,tk), the
valid substitutions of the terms t1,...,tk yield the tuples
of relation R. Multiple Datalog rules can share the same head
relation, thereby providing alternative ways to infer tuples
for a single relation. A Datalog solver takes all rules of a
Datalog program and computes their least fixpoint. A Data-
log solver is incremental if it can update the fixpoint based
on changes to the program’s inputs.
As an example, consider the following subset of rules of

a context-insensitive, flow-insensitive, yet inter-procedural
points-to analysis for Java from the Doop framework [34]:

PT(var,obj) :− Reach(meth), Alloc(var,obj,meth).

PT(var,obj) :− Move(var,from), PT(from,obj).

PT(this,obj) :− Resolve(_,this,obj).

Resolve(meth,this,obj) :− PT(rcv,obj),

VCall(rcv,sig,_,inMeth), Reach(inMeth),

Type(obj,cls), Lookup(cls,sig,meth), ThisVar(meth, this).

Reach(meth) :− Resolve(meth,_,_).

Reach(meth) :− FuncName(meth, "main").

Doop uses a Datalog solver called Soufflé [17] to support the
analysis of large code bases. However, Soufflé is not incre-
mental and thus a complete reanalysis is necessary whenever
any aspect of the analyzed program changes. To run Doop
analyses incrementally, we tried to apply the incremental

https://github.com/szabta89/IncA
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Datalog solver provided by IncA. IncA is an incremental
Datalog-based analysis framework that has been success-
fully used to incrementalize points-to [37], interval, and
string analyses [36] in the past. However, the performance
numbers in the literature only report on intra-procedural
runs of IncA analyses; it is unclear if this approach scales to
whole-program analyses.

We tested the scalability of IncA by running the inter-
procedural points-to analysis from Doop on the source code
of the MiniJava compiler.2 While the code base only com-
prises 6.5 KLoC, inter-procedurality entails analyzing large
parts of the JRE, so that the transitively reachable code size
is considerable.
To our surprise, the performance of IncA on this bench-

mark was very poor. Specifically, deleting a single assign-
ment from the analyzed code took up to 22 s until an up-
dated analysis result was available, with a mean of 9 s for a
sequence of random deletions. To put these numbers into per-
spective, the initial analysis took around 35 s. Even though,
the initial analysis is a one-off cost, so its run time is ac-
ceptable, such high update times are incompatible with run-
ning whole-program analyses on-the-fly in IDEs. Indeed,
we must conclude that IncA fails to efficiently incremental-
ize whole-program analyses, because the update time is not
proportional to the change size.
Problem 1: Incrementalizability. We must pause and
ask if we are trying to achieve an impossible task. Is it even
possible to efficiently incrementalize whole-program anal-
yses? A computational task is only incrementalizable if it
adheres to the principle of inertia: Small input changes lead
to small output changes. It is not clear if whole-program
analyses adhere to this principle, because a small change in
one part of the program may affect analysis results in many
other places. When this happens, incremental processing of
the code change will be inefficient. In Section 3, we present
a simple yet effective empirical methodology to test if a com-
putation is incrementalizable. We apply our method to test
the incrementalizability of three inter-procedural analyses:
points-to, constant propagation, and interval analyses. We
find that all of the analyses are incrementalizable, and we
suspect that this is true for many other analyses, as well.
Therefore, we must tackle the second problem.
Problem 2: Scaling incremental analyses. While IncA
efficiently executes intra-procedural analyses, it failed to
yield satisfactory performance for whole-program analyses.
We studied the implementation of IncA in detail and found
that the performance problem is due to the underlying Data-
log solver. IncA’s Datalog solver is a variant of the famous
DRed [13] algorithm. In response to a deletion, DRed inval-
idates all results that (transitively) depend on the deleted
code, and then it re-derives results that are still valid after
the deletion. This behavior in DRed is necessary to correctly
2https://github.com/mtache/minijavac

PT(var,lat) :− Reach(meth),Alloc(var,obj,meth),lat=O(obj).

PT(var,lat) :− Move(var,from), PTlub(from,lat).

PT(this,lat) :− Resolve(_,this,lat).

PTlub(var,lub(lat)) :− PT(var, lat).

Resolve(meth,this,lat) :− PTlub(rcv,lat),

VCall(rcv,sig,_,inMeth), Reach(inMeth), lat = O(obj),

Type(obj,cls), Lookup(cls,sig,meth), ThisVar(meth, this).

Resolve(meth,this,lat) :− PTlub(rcv,lat),

VCall(rcv,sig,_,inMeth), Reach(inMeth), lat = C(cls),

LookupInSubclasses(cls,sig,meth), ThisVar(meth, this).

Reach(meth) :− Resolve(meth,_,_).

Reach(meth) :− FuncName(meth, "main").

Figure 1. A lattice-based points-to analysis in Datalog.

update fixpoint results in face of cyclic dependencies. How-
ever it makes incremental handling of deletions prohibitively
slow. To support incremental whole-program analyses, we
must replace DRed with an incremental Datalog solver that
scales better. However, in doing so, we must consider the
specific requirements of static analyses.
Problem 3: Lattice-based aggregation Static analyses
routinely use lattices to abstract concrete values [26]. While
this is unproblematic in monotone frameworks and abstract
interpreters, recursive aggregation (e.g., least upper bound) is
very challenging for Datalog solvers. Even non-incremental
Datalog solvers often lack support for user-defined aggrega-
tion. For example, Soufflé only provides four built-in aggrega-
tors, so that Doop can only encode powerset-based analyses.
Since we want to incrementalize a wide range of whole-
program analyses, our new incremental Datalog solver must
support recursive lattice-based aggregation.

For example, consider a lattice Bot ⊑ O(obj) ⊑ C(cls),
where O and C are singleton constructors for objects and class
types, respectively. With this lattice, we precisely track sin-
gleton abstract objects O(obj), but fall back to type-based
method resolution on types C(cls) in other cases. Figure 1
shows a variant of the points-to analysis from above that
uses this lattice. Importantly, we recursively aggregate the
entries of relation PT in relation PTlub, where we compute
the least upper bound lub over a variable’s points-to targets.
The only previous Datalog solver to support this is a vari-
ant of DRed [36] in IncA, which our benchmark from above
exposed as too slow for whole-program analyses. Moreover,
this algorithm would diverge for our lattice-based analy-
sis because it imposes per-rule monotonicity requirements,
whereas our analysis only satisfies per-relation monotonicity
for Resolve. We not only support incremental aggregation
in our new Datalog solver, but also lift this overly strict re-
quirement through a new aggregation semantics in Section 4.

3 Incrementalizability in Datalog

The core idea of incremental computing is that the processing
of input changes is sometimes much faster than the repro-
cessing of the changed input. Yet, there is no good indicator

https://github.com/mtache/minijavac
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Figure 2.Whole-program analyses are incrementalizable because small input changes have low impact.

to determine which computations are amenable to such in-
crementalization. In particular, it is unclear if whole-program
analyses can be efficiently incrementalized, or if all hope is
lost because even small input changes require large amounts
of recomputation. To answer this and similar questions, we
propose a methodology that considers a necessary condition
for a Datalog computation to be incrementalizable.
Datalog programs compute finite relations. This in con-

trast to other more general logic programming languages
such as Prolog, which compute infinite relations. Most Data-
log solvers exploit the finiteness of Datalog programs and
exhaustively enumerate all derivable tuples. That is, they
yield fully populated relations. We can use these relations to
measure the impact of an input change:

Impact: The impact of an input change is the number of
output tuples that are deleted or inserted because of it.

Importantly, we can measure the impact of an input change
using a non-incremental Datalog solver: We run the com-
putation once with the old input and once with the new
input, and compute the difference of the output relation(s).
For points-to analysis, the impact of a code change is the
number of affected points-to tuples (relation PT). For the
constant propagation and interval analyses, the impact of
a code change is the number of affected value assignments
to variables. Based on this notion of impact, we informally
define incrementalizability.

Incrementalizability: A computation can only be incre-
mentalizable if the vast majority of small input changes have
low impact.

Equivalently, we can say that high-impact changes must be
rare. Since we only restrict the effect on observable output
tuples, our definition provides a necessary condition for in-
crementalizability. Andwe can test this condition empirically,
as we shall see for whole-program analyses.
Whole-Program Analyses are Incrementalizable We
apply our methodology to three whole-program analyses:
points-to, constant propagation, and interval analyses. We
benchmarked each analysis against the MiniJava compiler
and against four real-world Java code bases from the Qualitas
Corpus [38]: antlr, emma, pmd, and ant. We generated small
input changes per code base that are likely to affect the
analysis results. For points-to analysis, we delete or insert
allocation sites; for the constant propagation and interval
analyses, we replace numeric constants by zero. More details
about the benchmark setup can be found in Section 7.
We measure the impact of each input change. We show

the measurement results in Figure 2, where we group the
data into exponentially growing buckets. For example, the
third bucket 10e3 shows the number of input changes that
affected between 10 and 100 tuples, the fourth bucket 10e4
shows the number of those that affected between 100 and
1000 tuples, and so on. As a frame of reference, note that the
entire database contains millions of tuples for each analysis
run. Our measurements clearly show that the vast majority
of changes have low impact, although changes with higher
impact do exist. This observation holds across both analyses
and across all five code bases. Therefore, we conclude that
whole-program analyses are incrementalizable.
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4 Laddder: An Incremental Datalog Solver

While Datalog extended with lattices is a good fit for a wide
range of static analyses, Section 2 revealed two main ob-
stacles to efficient incrementalization, especially in the face
of high-impact changes: cyclic dependencies among partial
analysis results and overly strict monotonicity requirements
on the analysis definition. To address these challenges, we de-
velop a new incremental Datalog solver called Laddder. Lad-
dder uses a non-standard aggregation semantics to loosen
the monotonicity requirements enforced by previous incre-
mental solvers. This way, Laddder supports a wider range
of analysis definitions, including the lattice-based points-to
analysis from Figure 1.

Laddder builds on differential dataflow [22] (DDF), which
is a generic computational model to incrementally maintain
any iterative dataflow computation. Laddder and other DDF-
style approaches [16, 24, 31] track at which fixpoint iteration
a tuple was derived. We call this the timestamp of the tuple.
Since tuples can only recursively depend on tuples that were
derived in earlier fixpoint iterations, we obtain fine-grained
data dependencies that help incrementality. This is in con-
trast to other incremental Datalog solvers like DRed [13],
which merge all tuples derived up until any iteration count
into a single set.

4.1 Initial Analysis with Laddder

The input to Laddder is an analysis encoded as Datalog rules
plus facts encoding the subject program. Laddder repeatedly
applies rules until a fixpoint is reached, thereby computing
the tuples that the relations (defined by the rules) consist of.
Laddder follows a semi-naïve evaluation strategy [12]: In
each iteration of the fixpoint computation, Laddder only
considers new tuples from the previous iteration instead of re-
applying rules on the whole set of tuples computed thus far.
Laddder breaks up the analysis into dependency components
(sets of mutually recursive rules, also called strata in Datalog)
and applies rules according to a topological ordering of these
components: Only after the fixpoint iterations finished in
all upstream components, will Laddder start evaluating a
downstream component.

Consider again the singleton points-to analysis of Figure 1,
where we used lattice Bot ⊑ O(obj) ⊑ C(cls) with sin-
gleton objects O and class types C. We illustrate the evalu-
ation trace of Laddder in Figure 4, where we analyze the
example program from Figure 3. The trace reads from top to
bottom along the fixpoint iteration time axis. An increasing
timestamp (denoted by T) value is associated with every iter-
ation, and the figure shows all tuples inferred at a specific
timestamp. Fixpoint computation starts from the tuples pro-
duced by upstream dependency components, which, for our
example, are all singleton components consisting of rules
enumerating facts. These facts all appear at timestamp 0. Gen-
erally, we must increment timestamps (i.e. postpone for the
next iteration) at least once as we go around a dependency

cycle among rules to unroll the recursion. In the example,
we chose a simple way to achieve this: Each inferred head
tuple gets a timestamp that is one higher than the highest
timestamp of the tuples used in the rule body.
Support counts Laddder also maintains a support count
for each tuple per timestamp: The count is equal to the num-
ber of alternative derivations a given tuple has at a specific
timestamp. For example, Reach(proc) has count 2 at times-
tamp 7 (note the 2× symbol) because it can be inferred in
two alternative ways by using the two Resolve tuples from
timestamp 6. Support counts save time during incremental
maintenance because they tell Laddder if alternative deriva-
tions remain for a tuple after deletions. We demonstrate this
in detail in Section 4.2.
Based on support counts, Laddder considers different

forms of timelines for each tuple. Figure 5 shows the time-
lines of tuple Reach(proc); for now, ignore the dashed lines
in the figure. Cumulative count shows the total number of al-
ternative derivations as a function of timestamps: There are 2
alternative derivations at timestamp 7, and onemore at times-
tamp 10. From the cumulative count timeline, a cumulative
existence timeline can be inferred: Its value is 1 if the tuple
exists at a specific timestamp, 0 otherwise. Ultimately, the
cumulative existence is the important information for the fix-
point computation: a Datalog rule can use a tuple only when
it “exists". This is straightforward during the initial semi-
naïve evaluation because consecutive iterations infer new
tuples based on the tuples from previous iterations, but will
gain significance in an incremental setting (see Section 4.2).
To maintain the cumulative timelines during semi-naïve eval-
uation, Laddder uses differential timelines that reflect the
changes in the cumulative ones. The differential count sig-
nals the changes in support counts at specific timestamps,
while the differential existence is either +1 or -1 to signal the
appearance or disappearance of a tuple.
Aggregation The aggregation semantics of Laddder vastly
differs from previous approaches, influencing how timelines
are maintained. All existing DDF-based frameworks [16, 22,
31], as well as non-DDF approaches like IncA or Flix [21], use
an aggregation semantics that was introduced by Ross and
Sagiv [30]. In this semantics, a change in an aggregate result
is represented with a deletion of the old and an insertion
of the new result. In contrast, Laddder uses a nonstandard
inflationary semantics [14]. This means that Laddder never
retracts old aggregate results, it only ever inflates the set of
aggregate results with the newly computed ones along the it-
eration time axis. Formally, for an aggregation groupд (set of
grouping variables), timestamp t , and aggregation operatorα ,
Laddder computes the set of tuples {(д,α(M[t])), (д,α(M[t−
1])), . . . (д,α(M[0]))} whereM[T ] yields the multiset of ag-
gregands at timestamp T . This is also visible in Figure 4 be-
cause at timestamp 9 Laddder infers PTlub(f,O(F1)) (from
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class Executor { 
 public static void run(Env env) { 
  Session s = new Session(); 
  ...
  if (...) { 
   Session s1 = s;
   ... 
   s1.proc(); 
  } else { 
   Session s2 = s;
   ...  
   s2.proc(); 
}}} 

class Session {
 public void proc() { 
  Factory f;
  if (...) {
   f = new DefaultFactory();
  } else {
   Factory c = new CustomFactory();
   f = c;
  }
  f.init(); 
  if (...) { 
   this.proc(); 
}}} 

abstract class Factory { 
 abstract void init();
}
class DefaultFactory extends Factory {
 @Override void init() { ... }
}
class CustomFactory extends Factory {
 @Override void init() { ... }
}
class DelegatingFactory extends Factory {
 @Override void init() { ... }
}

S

F1

F2

points-to call graphLegend: abstract object

Figure 3. Example subject program used as input to the singleton points-to analysis.

T → Tuples produced at timestamp T

0 → facts (VCall, Move, Alloc, . . . )
1 → Reach(run)
2 → PT(s, O(S))
3 → PTlub(s, O(S))
4 → PT(s1, O(S)), PT(s2, O(S))
5 → PTlub(s1, O(S)), PTlub(s2, O(S))
6 → Resolve(s1.proc(), proc, thisSession, O(S)),

Resolve(s2.proc(), proc, thisSession, O(S))
7 → 2×PT(thisSession, O(S)), 2×Reach(proc)
8 → PTlub(thisSession, O(S)), PT(f, O(F1)), PT(c, O(F2))
9 → Resolve(this.proc(), proc, thisSession, O(S)),

PTlub(f, O(F1)), PTlub(c, O(F2))
10→ PT(f, O(F2)), PT(thisSession, O(S)), Reach(proc),

Resolve(f.init(), initDefFactory , thisDefFactory , O(F1))
11→ PTlub(f, C(Factory)), PTlub(thisSession, O(S)),

Reach(initDefFactory )
12→ Resolve(f.init(), initDefFactory , thisDefFactory , C(Factory)),

Resolve(f.init(), initCusFactory , thisCusFactory , C(Factory)),
Resolve(f.init(), initDelFactory , thisDelFactory , C(Factory))

13→ Reach(initCusFactory ), Reach(initDelFactory )
Figure 4. Laddder evaluation trace for the singleton points-to
analysis on the subject program from Figure 3.
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Figure 5. Timelines of Reach(proc) as maintained by Laddder.

M[9] = {O(F1)}) and then PTlub(f,C(Factory)) at times-
tamp 11 (fromM[11] = {O(F1),O(F2)}), without retracting
the former. As we detail in Section 4.3, this semantics al-
lows us to loosen the monotonicity requirements on analysis
definitions compared to the stricter requirements of exist-
ing solutions. With inflationary semantics, once a tuple gets

inferred at a timestamp, it will exist at all subsequent times-
tamps along the iteration axis. In other words, the existential
timelines can actually be represented by a single timestamp,
which signals the first moment when a tuple appears during
the fixpoint computation. For example, PTlub(f,O(F1)) has
a validity interval T ∈[9,∞) according to inflationary se-
mantics, while it would have [9,11) with other DDF-based
approaches.
However, with inflationary semantics, the relations of

the analysis will contain additional, intermediate, aggregate
results. Typically, this is unwanted by downstream compo-
nents or analysis clients. Similarly, timestamps do not carry
useful information for downstream components; they are
important inside the current component to unroll recursion.
To this end, Laddder performs two steps of postprocessing
on the output of each component. First, it provides a timeless
view of the tuples by simply not writing timestamps to the
output. Second, Laddder filters out intermediate results and
only writes the final aggregate result to the output for each
aggregation group. The final result is either the largest or
smallest value according to the aggregation direction.

4.2 Incremental Analysis with Laddder

Orthogonal to the iteration time axis, Laddder uses a sepa-
rate time axis to represent epochs when the input changes.
Assume that Laddder already computed and stored the re-
sults of a semi-naïve evaluation based on the input at epoch
e1 and a change happens at e2, where e2 > e1. The goal of
incrementalization is to correct the states of the previous
evaluation based on the diff between the inputs at e1 and e2,
so that they become as if the input at e2 was evaluated from
scratch. Laddder uses the input diff to trigger a new fixpoint
evaluation that infers which tuples need to be inserted or
deleted at higher timestamps. Let us look at an example.
Assume that we associate epoch 0 with the initial code

in Figure 3, and we delete s2.proc() at epoch 1. The input
diff is the deletion of a virtual call fact, and Laddder uses
this to update (compensate) its state to epoch 1:

T Difference of tuples starting at timestamp T

0 -VCall(s2, proc, s2.proc(), run)

6 -Resolve(s2.proc(), proc, thisSession, O(S))

7 -PT(thisSession, O(S)), -Reach(proc)



Incremental Whole-Program Analysis in Datalog with Lattices PLDI ’21, June 20–25, 2021, Virtual, Canada

Concepts presented before, such as timestamps, support
counts, and timelines, all come into play. The compensation
starts with the input diff shown at timestamp 0 as a deletion,
hence the minus (-) symbol. The deletion of this fact invali-
dates a Resolve tuple at timestamp 6, originally derived by
the first Resolve rule in Figure 1. Among the tuples used in
the rule body during the initial derivation, PTlub(s2,O(S))
was inferred latest at 5, hence the timestamp 6 for the head.
Propagating this, Laddder deletes one derivation each of
both PT(thisSession,O(S)) and Reach(proc) at timestamp
7. The support count of both tuples gets decremented to 1 (c.f.
Figure 4 at timestamp 7), but this means that an alternative
derivation still remains for each tuple. There is no existential
diff, so the compensating propagation terminates.

The example is indicative of a scenario where IncA would
not stop in only three steps, but would rather over-delete
and re-derive much of the previous result. The underlying
fixpoint algorithmDRed cannot tell apart the different deriva-
tions of the Reach(proc) tuples, having coalesced them into
a single state. Therefore it must over-delete to tackle cyclic
dependencies [36], as a positive support count remaining
after deleting a derivation of a tuple is insufficient evidence
for its continued existence. This is easily demonstrated by
deleting the s1.proc() call in run; then the only justifica-
tion for proc being reachable is the recursive call in itself,
but that recursive call would not be executed at all if there
is no other function calling proc.
While incrementalizing simple relational algebra opera-

tions in DDF is well-understood [22, 24], the efficient incre-
mentalization of aggregation along two (epoch and iteration)
time axes is challenging. In Section 5, we propose novel data
structures that can efficiently maintain lattice aggregates
in such a setting. But first, we review the assumptions of
Laddder on analysis definitions.

4.3 Monotonicity, Assumptions, and Guarantees

A novel aspect of our work is that Laddder imposes looser
monotonicity requirements on analysis definitions compared
to prior approaches. We first discuss the restrictions in the
state of the art by revisiting the Datalog code in Figure 1.
Recall that for the subject program from Figure 3 the

points-to value associated with f is updated from O(F1) to
C(Factory) in iteration 11 (c.f. Figure 4). The standard non-
inflationary Ross and Sagiv semantics [30] would represent
the change in the aggregate result as a deletion-insertion pair:
-PTlub(f,O(F1)) and +PTlub(f,C(Factory)). These tuples
both fall in aggregation group f, and the inserted lattice value
dominates the deleted one (O(F1) ⊑ C(Factory)). Ross and
Sagiv call this a ⊑-increasing change of the entire relation.
Termination and minimality of the fixpoint computation

is only guaranteed for ⊑-monotonic recursions: if recursive
inputs only ⊑-increase, outputs can only ⊑-increase as well.
If an output tuple is deleted at some stage of the fixpoint com-
putation, then a ⊑-dominating insertion must also appear at

the same stage. For instance in Figure 1, the first Resolve
rule is problematic because it retracts previous inferences
once a points-to set ⊑-increases to C(Factory). As stated in
Section 2, IncA failed to terminate, because the solver could
not guarantee that the second Resolve rule would produce
the ⊑-dominating insertion at the same stage of the fixpoint
computation. The problem is not unique to DRed; Ross and
Sagiv semantics can lead to a diverging fixpoint computation
in DDF as well, when timestamps of the deletion and the
⊑-dominating insertion fail to line up.
Solving this non-termination challenge, if possible at all,

would require either very clever preprocessing of the Data-
log rules, or input from the analysis developer. The set of
relations c where timestamps are to be incremented need to
be selected carefully: While the easiest option would be to
increment timestamps after each computation step or rule
application, this could easily break the alignment between
the two Resolve rules in the above example. Thus c needs to
(i) avoid the above mentioned non-⊑-monotonicity, and yet
(ii) be a cut of the recursion, i.e. each dependency cycle goes
through at least one timestamp increase, in order to avoid
cyclic dependencies in the analysis result. Such a fixed choice
of c will also restrict the ability of the solver to internally
optimize the rules, e.g. by extracting common sub-rules into
auxiliary relations that are separately maintained. However,
the latter is a frequently used query optimization strategy (cf.
higher-order view maintenance [2]). To this end, Laddder
uses the following assumption (looser that Ross and Sagiv),
enabled by inflationary aggregation:
Eventual ⊑-monotonicity (ASM1) Our more relaxed as-
sumption also requires ⊑-monotonicity, but only for one cut,
and only in an eventual sense. If the relations in the cut only
⊑-increase in the recursive input, they must only ⊑-increase
on the output. But the insertion of any ⊑-dominating tuple
may be derived at an arbitrary timestamp, potentially later
than the deletion it dominates.
Furthermore, the analysis developer does not need to in-

form the query engine of a cut, as in, the developer can just
focus on defining the rules of the analysis. As long as an even-
tually monotonic cut exists, the solver can choose any other
cut and still get correct results. This allows larger freedom
for the analysis developer, but also for the solver to perform
optimizations. In particular, the analysis developer only has
to check that for each non-⊑-monotonic rule, another rule
exists that will eventually dominate the decrease, so that the
end result is ⊑-monotonic. See in Figure 1; the first Resolve
rule is non-⊑-monotonic if lat ⊑-increases, but the second
Resolve rule eventually ⊑-dominates it.
Laddder imposes two further assumptions as well:

Well-behaving aggregators (ASM2) Each recursive ag-
gregator must be well-behaving: (i) it is an associative and
commutative binary operation, (ii) it respects a partial order
⊑, that is, when applied to a (multi)set of aggregands, the
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Figure 6. Sequential architecture. Triangles represent balanced trees maintaining (intermediate) aggregates.

result must ⊑-dominate the aggregands, (iii) it guarantees a
stationary output in a finite number of repeated applications
even in case of infinite lattices (i.e. is a widening [7]). For
lattices with finite ascending chains, the lattice operations
lub/glb immediately satisfy these criteria.
Stratified recursion (ASM3) Non-monotonic recursion
is forbidden, which entails two constraints. First, stratified
negation is required. Second, for each lattice that is produced
in a dependency component, all aggregators applied on a
specific lattice must be well-behaving, agree on the same
⊑ ordering direction, and form a cut. We emphasize that
the requirement applies per lattice per component. Note the
word produced, as it can happen that a lattice is produced
in an upstream component, and the current component just
treats is relationally without aggregating on it. Both of these
requirements are standard in Datalog solvers, e.g. IncA also
expects that analyses meet these conditions.
Guarantees If an analysis satisfies these requirements,
then Laddder guarantees that the fixpoint computation ter-
minates and yields the minimal model, i.e. the ⊑-smallest re-
lations that are compatible with the rules. Laddder supports
any lattice-based analysis that is eventually ⊑-monotonic,
which also includes ⊑-monotonic analyses. We emphasise
that, in case the analysis is ⊑-monotonic according to the
Ross and Sagiv semantics, our eventually ⊑-monotonic se-
mantics yields the exact same results as the traditional one.
Note that in this paper we informally refer to our abstract
domains as lattices (as is typical in program analysis), but
technically we only require a partial order with a specific
kind of aggregation operator. A formal treatment of the as-
sumptions, semantics, correctness properties, and their proof
sketches are available in Section 6.

4.4 Comparing Laddder to Standard Datalog

The perceptive reader may wonder at this point how is Lad-
dder actually better than just using an incremental solver for
standard stratified Datalog (without recursive aggregation
or negation). Considering the fact that standard Datalog can
already express certain lattices, this is a valid question.
First, any aggregator can be implemented by a standard

Datalog rule q(X) :- q(A),q(B),X is lub(A,B). Stan-
dard Datalog is already inflationary (unlike recursive aggre-
gation [30], where we had to specifically apply inflationary
aggregation), so it can be made functionally correct by the

same postprocessing that we use in Laddder. But this rule
may yield an exponential amount of intermediate values.

Second, while Laddder uses inflation, it never propagates
aggregands, and it preserves a lot fewer intermediate aggre-
gate results than an incremental solver for standard Datalog
would do. Even for e.g. constant propagation, where there is
no exponential blow-up, Laddder is a significant improve-
ment, as an incremental solver for standard Datalog would
propagate all potential constants for each variable, plus Top,
while Laddder would propagate a single constant until a
second constant is found, then it would propagate Top only.
Third, while standard Datalog can perform “set union"

aggregations (powerset lattice) as one step, only certain finite
lattices can be encoded so, and even then it is generally
impractical (as argued by the authors of Flix [21, Section 1]).

5 Incremental Aggregation in Laddder

As said in Section 4, DDF is incremental along multiple time
axes: input epochs and iteration rounds. Thus an aggregator
data structure must yield the aggregate value (per each ag-
gregation group) as a function of iteration timestamp, and
then incrementally amend this function for each new epoch.
To aggregate lattices more efficiently than the standard

aggregator architectures [22] originally proposed for DDF,
we present a novel sequential incremental architecture that
takes advantage of (i) the binary aggregation operator being
associative and commutative as per Well-behaving aggre-

gators (ASM2) and (ii) Laddder being inflationary so that
all aggregands present at a given iteration round are also
present in all subsequent iterations.
We maintain a (multi)set of aggregands plus their aggre-

gate value for each iteration round, sparsely omitting times-
tamps where the multiset has not changed; these all are
incrementally maintained upon each new epoch. The multi-
set of all aggregands valid at a timestamp can be split into
a multiset of “new” aggregands inserted at that timestamp,
and the multiset of “old” aggregands inserted at any previous
timestamp (none of which are removed, due to inflation);
the total aggregate would then be the result of the binary
aggregation of these two collections. Since the aggregate of
“old” values is known anyways (as the aggregate value at the
previous timestamp), it is sufficient to maintain the “new”
aggregands per each timestamp in an incremental aggrega-
tor data structure. We use the data structure introduced in
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IncA [36] (applicable due to associativity and commutativ-
ity), which maintains (i) the multiset as a balanced binary
tree (e.g. AVL tree [32, Chapter 3.3]), and (ii) at each node
the aggregate of the subtree rooted there.
This architecture is depicted in Figure 6: At each times-

tamp, we maintain (as a tree) the aggregate of values inserted
in that iteration, if there is any (A). α denotes the aggrega-
tion operator, and small ri denotes the aggregate result at
the root of a tree. Capital Ri depicts the total aggregate value,
which is computed as a sequential roll up of all tree root
aggregates ri up to a specific timestamp. When a new epoch
updates one of these trees (B), its local aggregate is main-
tained as usual, and the total aggregate at the timestamp is
recomputed. Then the new total aggregate will roll up to
each later timestamp to recompute the totals, stopping early
if there is no more change at some point (C).

6 Formal Semantics of Laddder

We provide formal treatment of the theory behind Laddder.
After introducing the necessary terminology, we provide a
more detailed description of the assumptions of Laddder
on input analyses. Then, we spell out correctness properties
about Laddder, and we prove that Laddder satisfies them.

6.1 Concepts

For basic Datalog, we refer the reader to Green et al. [12].
We introduce advanced or non-standard terminology.
Predicates The predicates in a dependency component are
divided into exported and private predicates, depending on
whether they are directly used in downstream dependency
components or user-facing results. The former group is de-
noted Exp(D) for dependency component D. The Datalog
solver is free to introduce new private predicate symbols
for storing auxiliary results and rearrange rules in a way
that leaves the meaning of exported predicates intact. A cut
of a dependency component is a subset of its predicates
with the property that all recursive dependency loops in the
component must intersect the cut. An interpretation is an
assignment of actual relations to Datalog predicate symbols.
Immediate consequence Fixing the interpretation of the
predicates in a cut (as well as any upstream predicates) allows
the non-recursive evaluation of all rules in the component.
For a cut c of a component D, the immediate consequence
operator Tc (I , Jc ) takes I as an interpretation of upstream
dependency components and Jc an interpretation of predi-
cates in the cut, and directly applies the Datalog rules in the
component to derive a collection of tuples. These tuples will
form a new interpretation of all predicates inD. By recursion,
this includes the relations in c; we denote by Tc (I , Jc )[c] the
restriction of the results to the predicates in the cut.
In addition to the standard Datalog immediate conse-

quence operator Tc (I , Jc ), Laddder also makes use of an al-
ternative immediate consequence operator T̂c (I , Jc ) referred

to as inflationary consequence, which is obtained by modify-
ing the behavior of aggregators. In addition to the aggregate
value of the current iteration, T̂ also returns (derives as ad-
ditional tuples in the aggregating relation) each aggregate
result obtained at any earlier iteration timestamp.

Laddder iteratively applies the inflationary consequence
operator. We denote as T̂ (k )

c the effect of k iterations, with
T̂ (0)
c (I , Jc ) = Jc and T̂ (k+1)

c (I , Jc ) := T̂c (I , T̂ (k )
c (I , Jc )[c])., while

T̂ω
c (I , Jc ) consists of all tuples derived in any number of iter-
ations: T̂ω

c (I , Jc ) := T̂ (1)
c (I , Jc )

⋃
T̂ (2)
c (I , Jc )

⋃
. . ..

Lattices and ordering Datalog rules with aggregation
or expression evaluation can compute new values beyond
those present in the input (extensional) relations. These val-
ues belong to appropriate abstract domains, which are often
(practically) infinite. In our use case of program analysis,
such domains are typically lattices. Note, however, that for
Laddder to work correctly, we only actually require par-
tial orders equipped with binary operators having certain
properties (see Section 6.2).
Given that Datalog rules can simply use lattice values

produced in upstream dependency components without ag-
gregating them, we explicitly say that a component produces
a lattice if the value gets derived in the component by ex-
pression evaluation or aggregation.
Taking any one of the two partial orderings ⊑ for each

produced lattice of a dependency component, they can be
naturally extended [30] to: (i) tuples derived by a Datalog rule
as t ⊑ t ′, if t and t ′ are ⊑-related on all variables of computed
lattices, and agree elsewhere; (ii) entire interpretations I ⊑ I ′

if all t ∈ I have a t ′ ∈ I ′ with t ⊑ t ′. The latter relationship
is a preorder (transitive but not antisymmetric), as it permits
I ⊑ I ′ ⊑ I , denoted as I ≃ I ′, even if I , I ′; for finite
interpretations this means agreement in a subset of tuples
that ⊑-dominate all differences.

6.2 Refined Assumptions on Datalog Rules

We refer toWell-behaving aggregators (ASM2) and Strat-
ified recursion (ASM3) from Section 4.3. However, Even-
tual⊑-monotonicity (ASM1)was introduced in Section 4.3
only informally, so a more formal treatment is needed here.
We introduce the notion of a well-cut recursion.
Well-cut recursion (ASM1): We require that each depen-
dency componentD has at least one such cut c that iswell-cut,
i.e. has the following properties:

Aggregated cut (ASM1.1): The cut is placed after aggrega-
tions. More precisely, each predicate in c is the aggregation of
a collecting relation along all of its produced lattice variables.
Observable monotonicity (ASM1.2): c contains all the ex-
ported predicates of D, i.e. Exp(D) ⊆ c . In other words, pred-
icates that may permanently ⊑-decrease (when ⊑-increasing
the input), and hence not part of the well-cut, must not be
directly externally observable, only through their effect on
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the well-cut. Note that this also implies that only aggregated
predicates are visible externally.
Eventually ⊑-monotonic cut (ASM1.3): For each lattice pro-
duced in it, we require that the dependency component D be
associated with one of the ordering directions ⊑ of the lat-
tice such that for the above mentioned cut also demonstrates
eventually ⊑-monotonic recursion for the inflationary conse-
quence operator of any other aggregated cut: All tuples that
will eventually be derived for the predicates in the well-cut,
in any number of iterations, must be ⊑-dominated by at least
one tuple eventually derivable from each possible interpre-
tation that ⊑-dominates the original starting interpretation;
but the two tuples need not be derived in the same iteration.
Formally, for well-cut c and any aggregated cut d , Jd ⊑ J ′d
implies T̂ω

d (I , Jd )[c] ⊑ T̂ω
d (I , J ′d )[c].

The above definition of Well-cut recursion (ASM1) super-
sedes the informally described Eventual ⊑-monotonicity

(ASM1) fromhere on. Clarifying Stratified recursion (ASM3),
the aggregators of the dependency component are expected
to agree with the order ⊑ of the corresponding lattice as
mentioned in Eventually ⊑-monotonic cut (ASM1.3).

6.3 Semantics

Note while the existence of a well-cut is assumed, the seman-
tics and the implementation are based on a more general
kind of cuts: an eligible cut is any aggregated cut (as in Ag-

gregated cut (ASM1.1)) that contains all of Exp(D) (as in
Observable monotonicity (ASM1.2)). As eventual mono-
tonicity is not required, it is not necessarily a well-cut. Lad-
dder performs an iterative fixpoint computation that com-
putes the analysis result according to the following semantics.
For a dependency componentD, take an arbitrary eligible cut
and start at an empty Jc to compute Draw

c (I ) := T̂ω
c (I , ∅)[c]

the least fixpoint of T̂c . Since the inflationary variant of the
immediate consequence operator was used, the result may
contain aggregate results from older iterations as well. They
can be discarded by pruning the results at the cut by tak-
ing the ⊑-maximal (or, equivalently, latest result from each
aggregation group). The result of this pruning is denoted
D
prune
c (I ) := Prn(Draw

c (I )). The Laddder semantics of the
dependency component, as far as downstream components
or the end user is concerned, is the interpretations of the ex-
ported predicates Exp(D) (all contained in c by Observable

monotonicity (ASM1.2)), i.e. Dexp(I ) := D
prune
c (I )[Exp(D)].

6.4 Correctness Properties

Under the above assumptions, Laddder satisfies:

Termination (P1): The fixpoint computation of T̂c completes
in a finite number of iterations for any aggregating cut c .
Stability (P2): For anywell-cut c , the results are stable under
the consequence operations: both the raw resultsDraw

c (I ) and
their pruned form D

prune
c (I ) are fixpoints of the inflationary

consequence operator T̂c ; while the latter is also a fixpoint
of the conventional immediate consequence operator Tc . In-
formally, this means that the Datalog rules are satisfied in
the final state.
Minimal model (P3): For any well-cut c , among all possible
T̂c -stable interpretations, Draw

c (I ) and D
prune
c (I ) are both ⊑-

minimal (which is only unique up to ≃, due to the preorder
property). Moreover among such ⊑-minimal interpretations,
D
prune
c (I ) is set-minimal. In practice, this implies the absence

of recursively self-reinforcing false tuples in the results.
Well-defined semantics (P4): The semantics Dexp(I ) is in-
dependent from the choice of the eligible cut used to com-
pute it. In fact, as long as a well-cut exists, any other cut
that satisfies Aggregated cut (ASM1.1) and Observable

monotonicity (ASM1.2) (but not necessarily Eventually

⊑-monotonic cut (ASM1.3)) will yield the same final result
as the well-cut. As eligible cuts are easy to find algorithmi-
cally (e.g. just include all aggregations), there is no need for
the user to point out a cut to the evaluator, merely promise
that a well-cut exists. Furthermore, as any eligible cut is
acceptable, the evaluator may freely choose one based on
performance considerations.
Compatible semantics (P5): If the standard aggregation
semantics (Ross and Sagiv [30]) is also defined for a well-cut
c of the component (and thus Tc is immediately monotonic),
its least fixpoint (minimal model) is Dexp(I ).

We formally prove the assumptions in our technical report:
https://github.com/szabta89/IncA/blob/master/papers/inca-
pldi2021-extended.pdf.

7 Evaluation

In Section 3, we showed that Datalog-based whole-program
analyses are amenable to incrementalization, although state-
of-the-art Datalog solvers are incapable of delivering efficient
incremental updates. In this section, we empirically evaluate
if Laddder achieves efficient incrementalization of whole-
program analyses by answering the following two questions:

Run time (RQ1) Can Laddder provide quick feedback for
lattice-based inter-procedural analyses?
Memory (RQ2) Is the extra memory consumption of Lad-
dder acceptable for IDE usage?

We implemented Laddder in Java as open source software,
and we integrated it into the ViatraQuery [39] incremen-
talization library. Given that IncA also uses ViatraQuery
as the solver, this allowed us to reuse the front end of IncA.
Below we describe the detailed evaluation setup.
Analyses We evaluate Laddder on three lattice-based
whole-program analyses. First, we use an inter-procedural k-
update points-to analysis for Java that over-approximates to
Top only if a points-to set grows beyond a fixed size k . A low
k makes the analysis cheaper to compute while still enabling

https://github.com/szabta89/IncA/blob/master/papers/inca-pldi2021-extended.pdf
https://github.com/szabta89/IncA/blob/master/papers/inca-pldi2021-extended.pdf
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certain compiler optimizations (e.g., inlining of virtual calls).
In the examples earlier in this paper we used k = 1 to model
a singleton points-to analysis, but for our measurements we
selectedk = 5 in ourmeasurements, whichmade the analysis
infer concrete points-to sets for around 40% of the program
variables. The analysis is based on a points-to analysis from
Doop [34], which we imported into IncA and to which we
added the lattice aggregation. We emphasise that the design
of the analysis is not a contribution of this paper; analysis
design is orthogonal to incrementalization.
We also implemented constant propagation and interval

analyses for Java. Both of these analyses are flow-sensitive
and inter-procedural, the only difference is in the lattice
abstraction used to track values of integer-typed variables.
These analyses operate on the Jimple representation of Java
programs that we extract using Soot [19].
Subject programs We benchmark the analyses against
four real-world Java code bases from theQualitas Corpus [38]:
antlr (22k LOC), emma (26k LOC), pmd (61k LOC), and
ant (105k LOC). To compare with the state of the art, we
added a smaller code base: minijavac (6.5k LOC). For the
points-to analysis, we used the Doop fact extractor to pro-
duce facts that describe the program elements (e.g. function
signatures) and their relationships (e.g. parameters of func-
tion) from the subject program and the JRE. For the constant
propagation and interval analyses, we use Soot to extract
the Jimple AST and the ICFG of the programs. We use the
ICFG as input to these analyses.
Program changes We run the analyses on the entire
code bases to initialize the incremental algorithm. Unfor-
tunately, there is no standard benchmark for incremental
program changes available, so we chose to synthesize pro-
gram changes that are likely to affect the analysis results.
For the points-to analysis, we randomly delete and re-insert
1000 object allocation sites. We chose to focus on allocation
sites because these are simple atomic changes that directly
affect the results of the points-to analysis, whereas many
other changes are no-ops for a points-to analysis. For the
constant propagation and interval analyses, we randomly
replace 1000 numeric literals and field reads with the zero
literal. Again, these kinds of program changes are “worst
case” for these analyses in terms of the workload because
there is a high chance that many assignments to variables
will be affected due to inter-procedurality. We acknowledge
that the way how we synthesize these changes is a threat
to validity, and future work should consider more realistic
editing scenarios with source code-level changes (in contrast
to low-level fact changes in input relations).
We consider every one of the synthesized changes indi-

vidually. After each change, we run the incremental analysis
until fixpoint and measure the update time of the analyses.
We ran each benchmark 4 times, dropped the result of the
first run to account for JVM warmup, and report the average

times of the remaining three runs. We ran the benchmarks
on an Intel Core i7-6820HQ at 2.7 GHz with 16 GB of RAM,
running 64-bit OSX 10.12.6 and Java 1.8.0_121.

7.1 Evaluating Run time (RQ1)

The range of the initialization times of the analyses on the 5
code bases are as follows: points-to analysis 57–172 s, con-
stant propagation analysis 5–23 s, and interval analysis 3–
23 s. These delays are acceptable because they are (i) one-off
costs only and (ii) possibly can be precomputed. The follow-
ing boxplots show the incremental update times of Laddder
for the various analyses:
k-update points-to analysis:
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For all analyses, the vast majority of changes are processed
in less than 100 ms. However, the points-to analysis has
a few outliers requiring up to 50 s to update the analysis
result, although 99% of them are still faster than 1000 ms. To
better understand outliers, we relate the update times of the
points-to analysis to the impact of the program change:
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For space reasons, we only show the diagram for the three
largest code bases, but when we fit a linear regression on
the log-log plots, we found that the relationship time ∼

impact1.5 approximately holds for all subject programs. We
believe that dealing with rare cases of high update times is
acceptable in practice, given that the vast majority of changes
are handled in milliseconds.
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7.2 Evaluating Memory (RQ2)

We measured the memory use of Laddder by taking the
reachable JVM heap size after initializing the analysis and
subtracting the size from before the analysis. Throughout
the program changes, the memory use of Laddder remained
roughly the same. The range of the memory use of the anal-
yses on the 5 code bases are as follows: points-to analysis
3.7–8.7 GB, constant propagation analysis 0.6–2.3 GB, and
interval analysis 0.8–2.9 GB. MPS used around 2 GB before
running the analysis, which means the largest overhead is
~4.5 times larger than that. These values may seem high, but
we emphasize that the analyses are inter-procedural, also
analyzing parts of the JRE. We have concrete plans to reduce
the memory overhead of Laddder; for example, by sup-
porting n-ary joins [25] instead of binary ones; or by using
larger-grained caching instead of caching every relational
algebra operation [11] (e.g. joins, selections).

7.3 Comparison with DRedL

Many incremental Datalog solvers are in principle compati-
ble with recursive aggregation, but only IncA and its solver
DRedL actually support it [36]. Therefore, we compare the
expressiveness and running times of DRedL and Laddder.
Recall that our new aggregation semantics is the first

to relax the standard per-rule monotonicity requirement.
Thus, many analyses supported by Laddder are incompat-
ible with prior incremental Datalog solvers. In particular,
the k-update points-to analysis relies on this relaxation and
cannot be run with DRedL. The constant propagation and
interval analyses, on the other hand, are compatible with
DRedL because there are no conditional rules based on pre-
viously derived constants. However, the relaxed semantics
can quickly become necessary: For example, DRedL fails if
we use derived constants to improve the control-flow (e.g.,
constant if-conditions).
We compare the performance of DRedL and Laddder

on the minijavac benchmark. We emphasise that the mea-
surements of DRedL and Laddder use the same analysis
specification and back end library, except that we configured
different fixpoint algorithms. Instead of the k-update points-
to analysis, we revert to a standard powerset-based points-to
analysis, so that DRedL can run it.
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Compared to DRedL, Laddder achieves faster update times
and it does so more consistently. We conclude that the in-
creased expressiveness of Laddder is relevant in practice
and that its update times improve the state of the art.

Finally, initializing the powerset-based points-to analy-
sis took 35.2 s for DRedL and 62.8 s for Laddder, constant
propagation analysis took 1.4 s for DRedL and 2.6 s for Lad-
dder, and interval analysis took 4.7 s for DRedL and 5.4 for
Laddder. These numbers show that the initialization time
of DRedL is consistently better, the overhead of Laddder
ranges between 15% up to 86%. As DRedL does not maintain
timelines, its from-scratch initialization phase is essentially
a standard bottom-up Datalog fixpoint evaluation. We can
therefore regard DRedL initialization times as stand-ins for
non-incremental algorithms3, and conclude that the over-
heads of incrementalization are manageable.

8 Related Work

Analysis frameworks Several approaches incrementalize
analyses that use the powerset lattice [10, 18, 28, 41], which
can express many interesting (inter-procedural) data-flow
analyses (e.g. set-based points-to or initialized variables). But
as argued by Section 4.4 and by Madsen et al. [21, Section 1],
custom lattices are more powerful. A restriction to the pow-
erset lattice rules out important analysis domains, including
those reasoning about strings [6], intervals [40], distributed
systems [5], or even our singleton points-to analysis.

Several frameworks analyze procedures in isolation to de-
rive summaries that describe their effect. Such frameworks
can usually deal with code changes efficiently because many
previously computed summaries can be reused and only
need to be re-composed with the newly derived summaries
of changed procedures. This way, Reviser [3] can handle
the entire Maven repository, and Infer [8] can deal with
Facebook-scale code bases. These tools are primarily used at
code reviewing time to deliver feedback within several min-
utes. However, summary-based approaches work efficiently
if summaries only encode procedure-local information. For
example, it was believed for a long time that reasoning about
points-to information of the heap cannot be efficiently sum-
marized [4]. Only recently did Späth et al. show how to
summarize certain subtasks of a powerset-based points-to
analysis [35]. It is unclear if this approach also works for our
singleton points-to analysis, or if other analyses using cus-
tom lattices and aggregation can be efficiently summarized.
DDF has a reference implementation in Rust available

open source.4 Apart from Laddder, there are other frame-
works that also build on DDF. For example, Differential
Datalog (DDLog) is a Datalog-based logic programming lan-
guage [31]. DDLog extends Datalog in several ways; e.g. with
an expression language, rich type system, andmodule system.
DDLog directly uses the DDF reference implementation for
incrementalization and experiments show that it can handle

3Actual non-incremental tools such as Flix [21] may of course implement
additional optimizations, but these are mostly orthogonal to incremental-
ization, and hence not relevant for supporting our claims in this paper.
4https://github.com/TimelyDataflow/differential-dataflow

https://github.com/TimelyDataflow/differential-dataflow
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Doop analyses efficiently [29]. 3DF [16] follows a similar ap-
proach, as it also compiles Datalog programs into DDF. The
primary application area of 3DF is to provide live updates in
streaming analytics systems. A key difference between these
approaches and Laddder is in the aggregation support. First,
Laddder uses an inflationary aggregation semantics which
enables looser requirements on analysis definitions (see Sec-
tion 4.3). Second, while the traditional DDF algorithm is
compatible with lattice-based aggregation, these approaches
do not actually provide a practical implementation for ag-
gregation over custom lattices. As the comparison to DRedL
in in Section 7 showed, both the aggregation semantics and
the sequential architecture play a crucial role in efficiently
scaling to lattice-based whole-program analyses.
Flix [21] is a non-incremental analysis framework that

uses Datalog and lattices. Analysis developers in Flix use a
Scala-based core functional language to define lattice oper-
ations. Flix puts emphasis on safe and sound analysis defi-
nitions in the front end because its compiler automatically
verifies the mathematical properties of lattice operations,
for example, if a lub operation is indeed monotone wrt. the
partial order of the lattice [20]. Currently, Laddder requires
analysis developers to reason about their code and ensure
e.g. eventual ⊑-monotonicity (Section 4.3). Flix also uses the
standard Ross and Sagiv aggregation semantics just like the
previous DDF-based approaches.
Demand-driven evaluation Laddder eagerly updates
all derived relations after a program change. Coupled with
high-impact changes, this strategy can (rarely) lead to update
times exceeding 10 sec (Section 7). Demand-driven evalua-
tion, i.e. the idea to only compute information that is needed,
may help here. For example, Boomerang is a highly-precise
points-to analysis that allows clients to query points-to in-
formation for a given context, which can be answered much
faster than analyses on the whole program [35]. Do et al. [9]
prioritizes the computation of analysis results that are rele-
vant for feedback around the actively edited code parts.
Datalog semantics Inflationary semantics [14] is a well-
knownDatalog concept, but it generally lacksminimal model
guarantees and is often associated with nondeterminism [1,
15]. Our application of inflationary semantics is novel in
providing, under specific assumptions, important correct-
ness guarantees, including both minimality and termination.
The equivalence between Laddder and conventional seman-
tics [30], if the latter exists, can be considered a reverse
application of the concept pre-mappability [42].
Comparison of DDF and DRed performance DRed suf-
fers from an over-deletion problem, where a large amount
of tuples could be deleted only to be later re-derived. This
shows up especially when frequently used library functions
are affected. DDF does not have this specific problem, but it
may also do unnecessary steps if e.g. a program change leads
to a new derivation of an existing tuple at an earlier iteration

round: Potentially all consequences of that tuple will have to
be computed again, at a shifted timestamp. Motik et al. con-
cludes [24] that neither algorithm5 is universally superior to
the other: It is possible to construct inputs that force either
solution to do significantly more work than necessary.
Regarding memory, DDF clearly needs more space than

DRed: Laddder associates each tuple with (a sparsely stored)
differential count timeline, as opposed to a single support
count (as in [36]). DDF would generally also require a differ-
ential existence timeline, but due to its inflationary nature,
Laddder can represent it as a single timestamp of appear-
ance. This overhead is highly dependent on the number
of different timestamps a tuple is derived at. In both cases,
practical implications can only be determined empirically.
Experiments in Section 7 reveal Laddder to be significantly
faster than DRed (IncA) with an acceptable memory cost.

9 Conclusions

We presented an approach for the efficient incrementaliza-
tion of lattice-based whole-program analyses. We used Data-
log and lattices in the front end to enable a wide range of
static analyses. Our new solver Laddder uses inflationary
aggregation semantics to loosen the monotonicity require-
ments on analysis definitions compared to prior approaches.
Laddder also combines the DDF computation model with
efficient aggregator architecture for improved performance.
In our evaluation, we first verified that lattice-based whole-
program analyses are amenable to incrementalization be-
cause high-impact changes happen rarely throughout a ran-
dom series of changes on real-world code bases. Then, we
showed that Laddder delivers the performance interactive
applications in IDEs need as it updates results in sub-second
time for more than 99 % of all changes, typically in a few mil-
liseconds.We pay the price for the fast updates with memory:
The overhead can get large, but not prohibitive.
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