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A Systematic Approach to
Deriving Incremental Type Checkers

ANONYMOUS AUTHOR(S)

Static typing can guide programmers if feedback is immediate. Therefore, all major IDEs incrementalize type
checking in some way. However, prior approaches to incremental type checking are often specialized and hard
to transfer to new type systems. In this paper, we propose a systematic approach for deriving incremental
type checkers from textbook-style type system specifications. Our approach is based on compiling inference
rules to Datalog, a carefully limited logic programming language for which incremental solvers exist. The key
contribution of this paper is to discover an encoding of the infinite typing relation as a finite Datalog relation
in a way that yields efficient incremental updates. We implemented the compiler as part of a type system DSL
and show that it supports simple types, some local type inference, operator overloading, and universal types.

1 INTRODUCTION
Many programming languages employ a static type system to check user-defined invariants at
compile time. Indeed, programmers of statically typed languages often rely on feedback from
the type checker for guidance. Unfortunately, type checking can take significant time for larger
programs and can interrupt the programmer’s development flow. Therefore, it is hardly surprising
that virtually all major IDEs incrementalize type checking in some way. Unfortunately, most of
these solutions are highly specialized and generally hard to transfer to a new type system. We lack
a principled solution for incrementalizing type checkers.

This paper presents a systematic approach for deriving incremental type checkers from textbook-
style type system specifications. Our approach is based on the idea of compiling inference rules to the
logic programming language Datalog. Targeting Datalog is promising because efficient incremental
Datalog solvers already exist [Ujhelyi et al. 2015]. However, targeting Datalog is also challenging,
because Datalog’s expressivity is carefully limited. Datalog programs can only compute finite
relations, whereas the typing relation usually is an inductively defined infinite relation. Although
this makes compiling type checkers to Datalog seemingly impossible, we have discovered a sequence
of systematic transformations that make the resulting inference rules expressible in Datalog.

The first transformation utilizes a new property we call co-functional dependencies. While a func-
tional dependency describes a uniquely determined output, a co-functional dependency describes
a uniquely determined input. In particular, for algorithmic type systems, the typing context and
other contextual information is co-functionally dependent on the syntax tree. Our transformation
exploits this property to factor out the context from the typing relation, making the typing relation
computable in Datalog. Unfortunately, the resulting type system won’t admit efficient incremen-
talization, because even a small change to the typing context will affect large parts of the typing
derivation. We discovered that we can eliminate this issue by complete deforestation [Wadler 1990]
of all typing contexts. Thus, our second transformation is a specialized deforestation of Datalog
programs. Our third and final transformation makes sure ill-typed terms do not unnecessarily prune
typing derivations. Otherwise, any code change that fixes a type error would entail significant
reanalysis. To this end, we developed a reformulation of type systems that separates error handling
from computing a type. Our transformation rewrites any algorithmic type checker into one that
collects type errors separately from the typing relation. This transformation may well be useful
independent of the rest of our work.
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Based on our transformations, we developed a domain-specific language (DSL) for type system
descriptions that compiles to Datalog. We have used the DSL to express a wide range of type
systems feature. In addition to PCF with product and sum types, we modeled bi-directional type
checking, operator overloading, and universal types in the style of System F. We can confirm
that all these features can be compiled to Datalog by our transformations and that the resulting
Datalog program is incrementally solvable. Effectively, our DSL derives incremental type checkers
from textbook-like type system specifications. We also measured the incremental performance of
compiled type systems for synthesized PCF programs. We designed a range of change scenarios
to challenge the incremental performance. We found that even when large parts of the program
are affected by a change, we still deliver updated typing information in at most several tens of
milliseconds.

In summary, we make the following contributions:
• We analyze the challenges associated with compiling type systems to Datalog (Section 2).
• We introduce co-functional dependencies and define a Datalog transformation that moves
co-functionally dependent data into a separate relation (Section 3).

• We show how to eliminate typing context propagation from type systems (Section 4).
• We show how to transform a type system to collect type errors on the side (Section 5).
• We implement all three transformations in the compiler of a type systems DSL (Section 6),
demonstrate its applicability (Section 7), and benchmark its performance (Section 8).

2 WHY ARE TYPE SYSTEMS IN DATALOG CHALLENGING?
This paper proposes to incrementalize type checkers by translation to Datalog. Our hypothesis is
that such translation can be done systematically and is useful: Existing incremental Datalog solvers
provide efficient incremental running times. In the present section, we illustrate why encoding type
checkers in Datalog is challenging in the first place. We highlight the challenges while translating
a number of exemplary type systems, all using the following syntax:

(program) p ::= main e
(expression) e ::= unit | x | λx :T . e | e e
(type) T ::= Unit | T → T
(context) Γ ::= ε | Γ, x :T

Our motivating examples will only differ in their typing relation but reuse the same syntax. For
each typing relation, we show how the type rules can be translated to Datalog and discuss if and
how a state-of-the-art incremental Datalog solver could handle them. As such, the current section
also presents the required Datalog background.

Challenge 1: Expressions. We start with the typing relation (e : T ) of a very simple type system
that only permits unit constants and their application. This type system is not particularly useful
but helps us illustrate how to translate a simple type system to Datalog.

T-Unit
unit : Unit

T-App
e1 : Unit e2 : Unit

e1 e2 : Unit
T-Main

e : T
(main e) ok

We can represent the typing relation (e : T ) as a binary Datalog relation typed(e,T ) and translate
each inference rule to a Datalog rule as follows:
typed(e,T ) :- ?unit(e), !Unit(T ).
typed(e,T ) :- ?app(e, e1, e2), typed(e1,T1), ?Unit(T1), typed(e2,T2), ?Unit(T2), !Unit(T ).

ok(p) :- ?main(p, e), typed(e,T ).
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A Systematic Approach to Deriving Incremental Type Checkers 1:3

A Datalog program consists of a sequence of rules, each of the form R(t1, . . . , tn) :- a1, . . . , am. The
rule head R(t1, . . . , tn) declares tuple (t1, . . . , tn) ∈ R if all atoms a1, . . . , am in the rule body hold.
Terms t are usually logical variables that are shared between the head and body of a rule. Atoms
a query relations R(t1, . . . , tn). This way, relations can depend on each other recursively. In this
paper, we use Datalog enriched with algebraic data types in order to model expressions, types,
contexts, etc. For each constructor c(x1, . . . , xk ) of an algebraic data type, we assume operations
!c(y, x1, . . . , xk ) and ?c(y, x1, . . . , xk ) to construct and deconstruct algebraic data x .

Given this Datalog background, it should be easy to see that (e,T ) ∈ typed if and only if there is a
derivation tree for (e : T ) according to the inference rules. We hope to incrementalize type checking
(i.e., finding a derivation tree) by applying existing incremental Datalog solvers to the derived
Datalog program. To this effect, it is important to know that incremental Datalog solvers evaluate
Datalog rules bottom-up, inductively enumerating all derivable tuples. When the input changes, an
incremental Datalog solver updates the relations by retracting those tuples no longer derivable and
inserting the newly derivable tuples. Unfortunately, this strategy hinges on the Datalog relations
being finite. However, our typing relation is infinite, because our example language contains
infinitely many well-typed programs:

typed = {(unit,Unit), ((unit unit),Unit), (((unit unit) unit),Unit), . . . }

Dealing with an infinite language is a standard problem when using Datalog for static analysis.
Even Datalog-based analysis systems without incrementalization such as Doop [Smaragdakis and
Bravenboer 2010] require finite relations. Fortunately, there is a standard solution that we can
employ here as well: Restrict the relations to only consider the user’s current program. That is,
rather than defining ?unit, ?app, and ?main inductively over all possible programs, we define
them as constant sets that exactly reflect the user program. Since the user program is finite by
construction, we can now evaluate typed bottom-up, enumerating the well-typed subset of the
nodes in ?unit, ?app, and ?main. This strategy has been successfully employed in Datalog-based
incremental analyzers before [Szabó et al. 2016], such that no further innovation is required for
this first challenge.

Challenge 2: Types. The previous type system is not very useful because it only inhabits the
Unit type. We extend this type system by allowing thunks and their application:

T-Unit
unit : Unit

T-App
e1 : Unit → T e2 : Unit

e1 e2 : T

T-Lam
e1 : T2

λx :Unit. e1 : Unit → T2
T-Main

e : T
(main e) ok

Again, we can translate these type rules to Datalog as explained above:
typed(e,T ) :- ?unit(e), !Unit(T ).
typed(e,T ) :- ?app(e, e1, e2), typed(e1,Te ), ?Fun(Te ,T1,T ), ?Unit(T1), typed(e2,T2), ?Unit(T2).
typed(e,T ) :- ?lam(e, x,T1, e1), ?Unit(T1), typed(e1,T2), !Fun(T ,T1,T2).

ok(p) :- ?main(p, e), typed(e,T ).
Again, we must ask if these rules can be evaluated bottom-up by an incremental Datalog solver.
And again this hinges on the Datalog relations being finite. If we assume like above that ?app,
?lam, etc. are constants and only enumerate the user’s current program, then only finitely many
expressions can occur in typed. Indeed, expressions are not the problem but types are. While the
previous type system only considered a single type Unit, this type system associates thunk types
of the form T ::= Unit | Unit → T to expressions. Notably, this domain is infinite and relation
typed ⊆ euser ×T could contain infinitely many tuples even if euser is finite.
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In truth, typed will only ever contain finitely many tuples. This is because of the functional
dependency e { T in typed, which means that column T of typed is uniquely determined by
column e of typed. That is, if (e,T1) ∈ typed and (e,T2) ∈ typed, then T1 = T2 [Watt 2018,
Chap. 11]. Our type system satisfies the functional dependency e { T because it is algorithmic.
Consequently, if typed only contains finitely many entries in column e , then typed can also
only contain finitely many tuples in e ×T . Therefore, typed is finite and incremental bottom-up
evaluation succeeds [Ramakrishnan et al. 1987].
It is noteworthy that many (even non-incremental) Datalog solvers would reject the derived

Datalog program because it synthesizes data at run time. However, our type system must generate
function types !Fun(T ,T1,T2) of arbitrary size to match the nesting level of lambdas in the user’s
program. The good news is that a few cutting-edge incremental Datalog solvers like IncA [Szabó
et al. 2018a] can handle the derived Datalog code. The bad news is that we must move beyond the
cutting edge to support more interesting type systems.

Challenge 3: Contexts. The next challenge arises when introducing typing contexts. To this
end, we consider the simply typed lambda calculus:

T-Unit
Γ ⊢ unit : Unit

T-App
Γ ⊢ e1 : T1 → T Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T

T-Lam
Γ, x :T1 ⊢ b : T2

Γ ⊢ λx :T1.b : T1 → T2
T-Var

Γ(x) = T

Γ ⊢ x : T
T-Main

ε ⊢ e : T
(main e) ok

The typing relation now is ternary and the inference rules thread the typing context:

typed(C, e,T ) :- ?unit(e), !Unit(T ).
typed(C, e,T ) :- ?app(e, e1, e2), typed(C, e1,Te ), ?Fun(Te ,T1,T ), typed(C, e2,T1).
typed(C, e,T ) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), typed(C

′,b,T2), !Fun(T ,T1,T2).
typed(C, e,T ) :- ?var(e, x), lookup(C, x,T ).

ok(p) :- ?main(p, e), !empty(C), typed(C, e,T ).

Note that we use !bind in the lam case to extend the context and lookup in the var case to extract
a binding from the context. The main program is checked in the !empty context.

Unfortunately, our derived Datalog program is not computable in bottom-up style anymore and,
thus, cannot be incrementalized by existing Datalog solvers. To see why, let us inspect the var rule
in more detail. This rule declares a tuple (C, e,T ) ∈ typed whenever ?var(e, x) and lookup(C, x,T )
hold. As argued above, we can restrict e to range over the user’s program only, so that only finitely
many variable symbols have to be considered here. But unlike before, e does no longer uniquely
determine T because the type also depends on the context C . Therefore, even a single variable x
has infinitely many potential typing derivations:

typed = { (x :Unit, x,Unit), (x :Unit → Unit, x,Unit → Unit),
(x :(Unit → Unit) → Unit, x, (Unit → Unit) → Unit), . . . }

As we will show in Section 3, a different encoding of type systems in Datalog can solve this problem.
Our solution works for algorithmic type systems and is based on the following observations:
(1) Algorithmic type systems do not guess substitutions of metavariables, but require metavari-

ables to be positively bound. In particular, when a judgment typed(C, e,T ) occurs as a premise,
the context C is uniquely determined.

(2) Algorithmic type systems are syntax-directed and conduct a fold over the syntax tree. This
means that each node in the syntax tree is visited at most once during typing.
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Together, these observations entail that each expression is checked under a single, uniquely deter-
mined context. We exploit this to factor out the context from relation typed, adding a new relation
context(e,C) that associates contexts to expressions. Both relations are finite now. In particular,
each variable x in the syntax tree occurs in a unique context context(x,C) and therefore has a
unique type typed(x,T ).

Challenge 4: Context propagation. By factoring out the context from relation typed, we
obtained a Datalog program that is computable in bottom-up style. Thus, we can apply cutting-
edge incremental Datalog solvers like IncA [Szabó et al. 2018a] to it. Unfortunately, this will
yield unsatisfactory incremental performance. In general, an incremental algorithm yields good
incremental performance if the size of a change correlates with the time it takes to process that
change. Conversely, the update time should be largely independent of the size of the overall input.
However, for our derived Datalog code, many small changes in the user program can require a
large amount of reanalysis. This problem is due to context propagation.

Consider the following example program, where we use let as syntactic sugar:

let id : Unit → Unit = λx :Unit. x
in λy:Unit. λz:Unit. e0

Expression e0 will be checked in a typing context that binds id, y, and z. Now, if the type of id
changes in any way, all previously propagated contexts have to be retracted and new contexts
have to be propagated. Specifically, the tuples of relation context(e,C) become obsolete for all
expressions e where id is in scope, even for expressions that do not actually refer to id. For
declarations with a wide scope, such as top-level functions, this behavior will incur a significant
incremental performance penalty.

The problem is that the derived Datalog code propagates entire contexts rather than individual
context bindings, and that it ignores whether a binding is being used. As we will show in Section 4,
we can systematically transform the Datalog code to solve this problem. To do so, we will generate
a new relation findBinding(x, e,T ) that finds the bound type of variable x occurring within
expression e . This relation will walk the syntax tree in the opposite direction of context propagation
until a binder for x is found. Since findBinding does not require a context, we will be able to drop
relation context and rewrite the var rule as follows:

typed(e,T ) :- ?var(e, x), findBinding(x, e,T ).

That is, starting at the reference e , we find the bound type of x . With this change, no context
propagation will be necessary anymore.

Challenge 5: Ill-typed terms. Static type systems restrict the syntactically well-formed terms
and define a language of well-typed programs. A syntactically well-formed term is well-typed if
there is a typing derivation for that term. This is a yes or no decision: in or out. For an algorithmic
type system, as soon as any rule fails to satisfy a premise, the entire program is known to be
ill-typed and typing can stop right there. However, aborting type checking early is unsatisfactory
for Datalog-based incrementality and for programmer feedback.

For Datalog-based incrementality, aborting type checking is unsatisfactory since it prunes tuples
from the typing relation unnecessarily. In particular, any typing that transitively depends on an
ill-typed term will be dropped from the typing relation typed. For a simple example, consider a
term using type ascription (e as T ). If e is ill-typed, e and all its ancestors will be dropped from
typed because the type rules require subterms to be well-typed. However, notice how the type of
(e as T ) really is independent of the well-typedness of e . We would like to retain (e,T ) ∈ typed,
which also allows the ancestors to be checked as usual. As a developer makes changes in quick
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1:6 Anon.

succession, alternating between a well-typed and an ill-typed program, a more stable typed relation
means faster update times.

The second concern with aborting type checking at the first type error is that this is inconvenient
in practice. Both compilers and programming editors usually try to report all type errors in the
program. In Section 5, we show that the Datalog code can be systematically rewritten to collect all
type errors and to avoid pruning the typing relation. To this end, we will generate another relation
errors(e, err) that associates type errors to expressions. A program p then is only well-typed if
p ∈ ok and errors = ∅.

Problem Statement. The goal of this paper is to translate type systems to Datalog to utilize
state-of-the-art incremental Datalog solvers. The translation should be systematic, applicable to a
wide range of type systems, and yield good incremental performance. In this section, we identified
the following five challenges:

(C1) Expressions are drawn from an infinite domain.
(C2) Types are drawn from an infinite domain.
(C3) Contexts are drawn from an infinite domain.
(C4) Contexts are threaded through typing derivations.
(C5) Ill-typed subterms abort type checking.

While prior work on Datalog-based static analysis can be used to solve challenges (C1) and (C2), the
other challenges require novel solutions. We present Datalog transformations that solve challenges
(C3)–(C5) in Sections 3–5.

3 TRANSFORMATION 1: CO-FUNCTIONAL DEPENDENCIES
Incremental Datalog solvers evaluate Datalog programs bottom-up. In the previous section, we
explained why a naive translation of a type system to Datalog does not permit the application of
bottom-up Datalog solvers (Challenge 3): Since contexts occur as a column in the typing relation
typed, the typing relation has infinitely many tuples as we illustrated for the var rule. Our solution
to Challenge 3 is based on a property of algorithmic type systems that we discovered and named
co-functional dependencies.

3.1 Co-Functional Dependencies
Co-functional dependencies express uniqueness relationships between columns of a relation,
similar to functional dependencies. Intuitively, a functional dependency describes unique “outputs”
of a relation, whereas a co-functional dependency describes unique “inputs” of a relation. For
example, the typing relation of the simply typed lambda calculus (typed ⊆ C × e × T ) has a
functional dependency (C × e) { T . That is, given C and e , type T is an “output” of typing
that is uniquely determined by C × e . Our new observation is that the typing relation also has
a co-functional dependency e

co
{ C . That is, given e , context C is an “input” of typing that is

uniquely determined by e and how typed is used. While the treatment of functional dependencies
is standard in databases [Watt 2018, Chap. 11] and Datalog [Ramakrishnan et al. 1987], our notion
of co-functional dependencies is novel to the best of our knowledge. Unfortunately, co-functional
dependencies are also much harder to detect and utilize, since they depend on how a relation is
being used.
The typing context C of the simply typed lambda calculus is an example of a co-functionally

dependent column: Each expression is only checked under a single context. We do not know how
to detect co-functional dependencies automatically, but instead rely on domain knowledge about
algorithmic type systems. In general, all contextual information passed around in an algorithmic
type system is uniquely determined for a syntax-tree node. This is because each syntax-tree node
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is visited at most once per relation (syntax-directedness), and the relevant context information is
unique (no guessing of metavariables). We could in principle also allow multiple visits of the same
syntax-tree node as long as relevant context information is identical in all visits. For example, this
will allow us to support operator overloading with overlapping inference rules (Section 7).

In the remainder of this paper, we assume functional and co-functional dependencies are declared
as part of a relation’s signature. To this end, we introduce the following notation for signatures
and dependencies:

(relation signature) σ ::= R :T1 × . . . ×Tn | F ,G
(functional dependencies) F ::= {P(N) { N, . . . }

(co-functional dependencies) G ::= {P(N)
co
{ N, . . . }

A relation signature (R :T1 × . . . × Tn | F ,G) describes the columns of relation R, its functional
dependencies F , and its co-functional dependencies G. Functional and co-functional dependencies
are defined based on column indices. For example, we can represent the typing relation of the simply
typed lambda calculus by signature (typed :C × e ×T | {{1, 2} { 3}, {{2}

co
{ 1}). The functional

dependency declares that columns 1 and 2 together uniquely determine column 3, that is,C×e { T .
The co-functional dependency declares that column 2 also uniquely determines column 1, that is,
e

co
{ C . Datalog relations annotated this way enable us to utilize co-functional dependencies.
Notation. We frequently need to denote sequences and subsequences in this paper. We write x

or x1, . . . , xn for a sequence of x elements. Given a set of indices I , we write xI for the subsequence
of x consisting of {xi | i ∈ I } and ordered by their index. We leniently write x,y and xI ,y and xI , x J
to concatenate sequences and sequence elements.

3.2 Utilizing Co-Functional Dependencies

A co-functional dependency c
co
{ c in relation R stipulates that column c of R is uniquely determined

by some other columns c of R. This allows us to factor out c from R, since we can always use the
other columns c to uniquely obtain c . However, the rules to obtain c from c are not obvious and
depend on how R is being queried. This makes co-functional dependencies difficult to utilize.

We have developed a transformation of Datalog code that factors out co-functionally dependent
columns c from their relation R. The key idea is to derive an auxiliary relation πR : c × c that has a
(regular) functional dependency c { c . Essentially, πR witnesses the contextual uniqueness of c by
mapping c to c locally. We then rewrite R to drop column c and to query πR instead. Essentially, if
(R(x, c, c) :-a) is a rule of R, then (R′(x, c) :-πR(c, c),a) will be a rule of the rewritten R′.

Before delving into the technical details of the transformation, let us consider its application to the
simply typed lambda calculus whose Datalog rules we showed in Section 2. Since typed :C × e ×T

has e
co
{ C , we derive the auxiliary relation πtyped : e ×C and use it in typed:

typed(e,T ) :- πtyped(e,C), ?unit(e), !Unit(T ).
typed(e,T ) :- πtyped(e,C), ?app(e, e1, e2), typed(e1,Te ), ?Fun(Te ,T1,T ), typed(e2,T1).
typed(e,T ) :- πtyped(e,C), ?lam(e, x,T1,b), !bind(C ′,C, x,T1), typed(b,T2), !Fun(T ,T1,T2).
typed(e,T ) :- πtyped(e,C), ?var(e, x), lookup(C, x,T ).

ok(p) :- ?main(p, e), !empty(C), typed(e,T ).

Note how we dropped column C from all rule heads and usages of typed. Instead, we introduced
the query πtyped(e,C) at the beginning of each typed rule to bind C .

For the derived relation πtyped : e ×C , we generate one rule for each call of typed. Thus, there is
no rule for unit because its rule does not call typed, but there are two rules for app. The derived
rules reflect how the co-functionally dependent input C was constrained. Essentially, for each call
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of typed(C, e,T ) we copy the surrounding rule and replace the head with πtyped(e,C):

πtyped(e1,C) :- ?app(e, e1, e2), typed(e1,Te ), ?Fun(Te ,T1,T ), typed(e2,T1), πtyped(e,C).
πtyped(e2,C) :- ?app(e, e1, e2), typed(e1,Te ), ?Fun(Te ,T1,T ), typed(e2,T1), πtyped(e,C).
πtyped(b,C

′) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), typed(b,T2), !Fun(T ,T1,T2), πtyped(e,C).
πtyped(e,C) :- ?main(p, e), !empty(C), typed(e,T ).

Note how the derived relation finds the co-functional column C of an expression e1 by querying
itself recursively for parent node of e1. This way, the derived relation retraces the original context
propagation. However, this initial version of πtyped only yields a context for e if e is in typed,
even though this does not influence which context is returned. To break this dependency, we drop
all atoms from πtyped that do not contribute to determining the co-functional column. We can
also simplify typed, but we may only remove atoms that are infallible (!bind, !empty, πtyped) to
preserve ill-typed terms. This yields the following minimal rule set with a clear division of labor:
πtyped propagates and extends the context, whereas typed does the checking and only mentions
the context in the var rule.

typed(e,T ) :- ?unit(e), !Unit(T ).
typed(e,T ) :- ?app(e, e1, e2), typed(e1,Te ), ?Fun(Te ,T1,T ), typed(e2,T1).
typed(e,T ) :- ?lam(e, x,T1,b), typed(b,T2), !Fun(T ,T1,T2).
typed(e,T ) :- πtyped(e,C), ?var(e, x), lookup(C, x,T ).

ok(p) :- ?main(p, e), typed(e,T ).

πtyped(e1,C) :- ?app(e, e1, e2), πtyped(e,C).
πtyped(e2,C) :- ?app(e, e1, e2), πtyped(e,C).
πtyped(b,C

′) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C).
πtyped(e,C) :- ?main(p, e), !empty(C).

It is easy to show by induction that πtyped satisfies the functional dependency e { C . As we
explained for Challenge 2 in Section 2, this is sufficient to ensure the finiteness of πtyped. Hence,
incremental Datalog solvers can apply their bottom-up evaluation strategy to this Datalog program.

3.3 Formalizing Transformation CoFunTrans
We formalize the transformation CoFunTrans that we described informally above. The transforma-
tion takes a Datalog program as input and rewrites it to utilize co-functional dependencies. The
transformation operates in two steps. First, we revise the signatures of existing relations and add
the signatures of derived relations πR . Second, we revise the rules of existing relations and add new
rules for derived relations πR .

CoFunTrans signatures. Let Σ be the set of relational signatures of the input Datalog program.
Then the rewritten Datalog program has signatures CoFunTransSigs(Σ) defined as follows:

CoFunTrans-UpdateSig

(R :T1 × . . . ×Tn | F ,G) ∈ Σ codepCols = {i | (I
co
{ i) ∈ G}

J = {1, . . . ,n} \ codepCols F ′ = deleteShift(F , codepCols)

(R :TJ | F ′, ∅) ∈ CoFunTransSigs(Σ)

CoFunTrans-DeriveSig

(R :T1 × . . . ×Tn | F ,G) ∈ Σ (I
co
{ i) ∈ G

f = {1, . . . , |I |} { |I | + 1
(πR,i :TI ×Ti | { f }, ∅) ∈ CoFunTransSigs(Σ)
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Rule CoFunTrans-UpdateSig updates the signatures of existing relations R by dropping all columns
codepCols that are co-functionally dependent . The updated signature of R only has columns J of
types TJ left. The functional dependencies F are updated accordingly and the co-functional depen-
dencies G are dropped entirely. In particular, function deleteShift(F , codepCols) deletes codepCols
from the functional dependencies in F and shifts the remaining indices to skip dropped columns.
For example, (typed :C × e ×T | {{1, 2} { 3}, {{2}

co
{ 1}) becomes (typed : e ×T | {{1} { 2}, ∅)

after dropping column C .
Rule CoFunTrans-DeriveSig generates a separate signature πR,i for each co-functional depen-

dency I
co
{ i of a relation R. Relation πR,i maps columns I of types TI to column i of type Ti , as

expressed by its functional dependency f .

CoFunTrans rules. Let Σ be the set of relational signatures of the input Datalog program and
let P be the set of rules of the input Datalog program. Then the rewritten Datalog program has
rules CoFunTransRules(Σ, P) defined as follows.

CoFunTrans-DropCodepArgs

(R :T1 × . . . ×Tn | F ,G) ∈ Σ codepCols = {i | (I
co
{ i) ∈ G}

J = {1, . . . ,n} \ codepCols
⌊R(x)⌋ = R(x J )

CoFunTrans-UpdateRule

(R :T1 × . . . ×Tn | F ,G) ∈ Σ (R(x) :-a1, . . . ,am .) ∈ P
Π = {πR,i(xI , xi ) | (I

co
{ i) ∈ G}

(⌊R(x)⌋ :-Π, ⌊a1⌋, . . . , ⌊am⌋ .) ∈ CoFunTransRules(Σ, P)

CoFunTrans-DeriveRule

(R :T1 × . . . ×Tn | FR,GR ) ∈ Σ (I
co
{ i) ∈ GR

(Q(y) :-a1, . . . ,ak , R(x),ak+2, . . . ,al .) ∈ P (Q :U1 × . . . ×Um | FQ ,GQ ) ∈ Σ

A = {⌊a1⌋, . . . , ⌊ak ⌋, ⌊ak+2⌋, . . . , ⌊al ⌋} Π = {πQ,j(y J ,yj ) | (J
co
{ j) ∈ GQ }

(πR,i(xI , xi ) :- slicexi (A ∪ Π).) ∈ CoFunTransRules(Σ, P)

Rule CoFunTrans-DropCodepArgs defines an auxiliary function ⌊a⌋ on atoms that removes co-
functionally dependent arguments from calls of R. We use this function in the other two rules.

Rule CoFunTrans-UpdateRule updates the Datalog rules of existing relations R by making three
changes. First, we remove co-functionally dependent columns from the rule head. Second, we insert
queries against the newly derived relations πR,i into the body of the rule for each co-functionally
dependent column i . Third, we remove co-functionally dependent arguments from calls to other
relations in the rule body.

Rule CoFunTrans-DeriveRule generates Datalog rules for the new relations πR,i . Specifically, we
generate one Datalog rule for each call of R and each co-functional dependency I

co
{ i of relation

R. Suppose the call of R occurs in a rule of Q . We derive the new rule by changing the rule of
Q in three ways. First, we exchange the rule head since we are only interested in learning how
xI determines xi . Second, we adapt the rule body just like CoFunTrans-UpdateRule did: remove
co-functionally dependent arguments and insert queries πQ , j . This yields the body. Third, we slice
the resulting (A ∪ Π) to only retain those that contribute to xi .

The resulting Datalog program witnesses co-functional dependencies through the derived rela-
tions πR,i . Note that the transformation only preserves the semantics of the main relation, but not
the semantics of individual Datalog relations. This is intended as we wanted to restrict typed to
become finite. Importantly, we only remove unnecessary tuples from typed such that the main
relation is preserved: p ∈ ok if and only if p ∈ CoFunTrans (ok).
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1:10 Anon.

4 TRANSFORMATION 2: CONTEXT FUSION
Transformation CoFunTrans from the previous section makes a Datalog-encoded type system
amenable to bottom-up evaluation. It does so by eliminating co-functional dependencies in favor of
functional dependencies. For a type system, this means that class tables, typing contexts, and other
contextual information is uniquely associated with each expression. While this enabled bottom-up
evaluation, it also introduced a new problem: Even a slight change to contextual information will
affect all expressions. This is the problem of context propagation we introduced as Challenge 4.
Context propagation is problematic whenever the context consists of compound information

(e.g., a typing context). When parts of the context are changed (e.g., the type of some variable), the
entire context will regarded as changed. This is because incremental Datalog solvers only trace
dependencies between relations and propagate inserted and deleted tuples, but they cannot trace
changes to individual components of those tuples. Therefore, when the type of a variable changes,
all typing contexts that contain that binding change, and thus all tuples that associate these contexts
to expressions need updating.
In this section, we present a Datalog transformation that eliminates intermediate compound

data. Specifically, we eliminate context information represented as immutable maps, which is
produced by the !empty and the !bind constructors and consumed with lookup. Our rewriting can
be regarded as a special case of deforestation [Wadler 1990] for immutable maps but for Datalog
programs and with support for recursively defined relations. Note also that immutable maps can
encode sets as Map[A,Unit] and lists as Map[Int,A], such that our rewriting supports many type
system specifications. Nonetheless, our primary motivation was the elimination of intermediate
typing contexts, which is why we call the transformation “context fusion”.

4.1 Context Fusion by Example
Consider again the Datalog rules for the simply typed lambda calculus, as produced by transforma-
tion CoFunTrans from the previous section.

typed(e,T ) :- ?unit(e), !Unit(T ).
typed(e,T ) :- ?app(e, e1, e2), typed(e1,Te ), ?Fun(Te ,T1,T ), typed(e2,T1).
typed(e,T ) :- ?lam(e, x,T1,b), typed(b,T2), !Fun(T ,T1,T2).
typed(e,T ) :- πtyped(e,C), ?var(e, x), lookup(C, x,T ).

ok(p) :- ?main(p, e), typed(e,T ).

πtyped(e1,C) :- ?app(e, e1, e2), πtyped(e,C).
πtyped(e2,C) :- ?app(e, e1, e2), πtyped(e,C).
πtyped(b,C

′) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C).
πtyped(e,C) :- ?main(p, e), !empty(C).

Our goal is to eliminate the typing context produced by πtyped and consumed by lookup in the var
rule. Though we consider lookup to be a built-in operation, it can be defined in Datalog as follows:

lookup(m,k,v) :- ?bind(m, _,k,v).
lookup(m,k,v) :- ?bind(m,m′,k ′,v ′), k , k ′, lookup(m′,k,v).

The first rule yields value v if mapm starts with a binding for key k . The second rule continues
lookup in the rest of the mapm′ if k differs from k ′.
To eliminate the context, we want to fuse πtyped and lookup. Specifically, since relation πtyped

has a functional dependency e { C , it uniquely associates a context to an expression. Thus, instead
of performing lookup on the context, can’t we derive a specialized lookup relation that operates
on the expression directly? Indeed, this is what our second transformation does.
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A Systematic Approach to Deriving Incremental Type Checkers 1:11

We derive a specialized lookup relation φtyped : e ×v ×T that finds the binding of a variable v
given an expression e . We find bindings by mimicking the rules of πtyped, When a !bind occurs
in πtyped, we inline the definition of lookup to check if we have found the desired entry. For the
simply typed lambda calculus we obtain the following rules:

. . . . . .
typed(e,T ) :- ?var(e, x), φtyped(e, x,T ).

φtyped(e1,k,v) :- ?app(e, e1, e2), φtyped(e,k,v).
φtyped(e2,k,v) :- ?app(e, e1, e2), φtyped(e,k,v).
φtyped(b,k,v) :- ?lam(e, x,T1,b), k = x, v = T1.
φtyped(b,k,v) :- ?lam(e, x,T1,b), k , x, φtyped(e,k,v).

For applications, πtyped propagated the context of the parent term e . Hence, φtyped continues its
search fork in the parent term, too. For lambdas,πtyped yielded an extended context !bind(C ′,C, x,T1).
We inline the definition of lookup and hence obtain two φtyped rules. First, we yieldT1 if the bound
variable x is the entry k we are looking for. Second, we continue searching in the parent term if x
and k differ. For the main program, πtyped yields the empty context !empty(C). Since lookup fails
on the empty context, we do not add a rule to φtyped. Consequently, φtyped will fail (as it should)
when we reached the root node and have not found a binding.

4.2 Formalizing Transformation CtxFusionTrans
We formalize the transformation CtxFusionTrans that we exemplified above. The transformation
takes a Datalog program as input and rewrites it to derive and apply find relations φR . We first
derive the new signatures and then update and add rules to the Datalog program.

CtxFusionTrans signatures. Let Σ be the set of relational signatures of the input Datalog
program. Then the rewritten Datalog program has signatures CtxFusionTransSigs(Σ) defined as
follows:

CtxFusionTrans-DeriveSig

(R :T1 × . . . ×Tn | F ,G) ∈ Σ
(I { i) ∈ F Ti = Map[K,V ]

f = {1, . . . , |I | + 1} { |I | + 2
(φR,i :TI × K ×V | { f }, ∅) ∈ CtxFusionTransSigs(Σ)

CtxFusionTrans-RetainSig
(R :T1 × . . . ×Tn | F ,G) ∈ Σ

(R :T1 × . . . ×Tn | F ,G) ∈ CtxFusionTransSigs(Σ)

Rule CtxFusionTrans-DeriveSig generates a signature for the find relations φR . We generate a
separate find relation for each functional dependency I { i where column i has a Map type. That
is, whenever it is possible to uniquely determine a map from other columns I , we want to find
bindings based on I . The find relation uniquely maps values of types TI together with a key of type
K to a value of type V , as expressed by the functional dependency f .
Rule CtxFusionTrans-RetainSig merely retains all existing signatures. Usually, it is possible to

drop relations that only produce a map since we won’t need them after the transformation. For
example, we dropped relation πtyped in our example from above, using φtyped instead. However,
our transformation does not account for this simple post-processing.

CtxFusionTrans rules. Let Σ be the set of relational signatures of the input Datalog program
and let P be the set of rules of the input Datalog program. Then the rewritten Datalog program
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1:12 Anon.

has rules CtxFusionTransRules(Σ, P) defined as follows. In computing CtxFusionTransRules(Σ, P),
we construct intermediate sets Step z (Σ, P) that contain rules after a z-fold unfolding of the !bind
constructor. Note that the unfolding is bounded by the number of syntactic occurrences of !bind in
the original rules.

CtxFusionTrans-Init

(R :T1 × . . . ×Tn | F ,G) ∈ Σ (R(x) :-a1, . . . ,am .) ∈ P
(I { i) ∈ F Ti = Map[K,V ]

(φR,i(xI ,k,v) :-a1, . . . ,am, lookup(xi ,k,v).) ∈ Step 0(Σ, P)

CtxFusionTrans-Unfold

(φR,i(xI ,k,v) :-a1, . . . ,am, lookup(xi ,k,v).) ∈ Step z (Σ, P)
!bind(M,M ′,k ′,v ′) ∈ {a1, . . . ,am} a1, . . . ,am ⊢ xi = M

(φR,i(xI ,k,v) :-a1, . . . ,am,k , k ′, lookup(M ′,k,v).) ∈ Step z+1(Σ, P)

CtxFusionTrans-Bound

(φR,i(xI ,k,v) :-a1, . . . ,am, lookup(xi ,k,v).) ∈ Step z (Σ, P)
!bind(M,M ′,k ′,v ′) ∈ {a1, . . . ,am} a1, . . . ,am ⊢ xi = M

(φR,i(xI ,k,v) :-a1, . . . ,am,k = k ′,v = v ′.) ∈ CtxFusionTransRules(Σ, P)

CtxFusionTrans-Delegate

(φR,i(xI ,k,v) :-a1, . . . ,am, lookup(xi ,k,v).) ∈ Step z (Σ, P)
Q(y) ∈ {a1, . . . ,am} a1, . . . ,am ⊢ xi = yj
(Q :T1 × . . . ×Tn | F ,G) ∈ Σ (J { j) ∈ F

(φR,i(xI ,k,v) :-a1, . . . ,am,φQ,j(y J ,k,v).) ∈ CtxFusionTransRules(Σ, P)

CtxFusionTrans-Replace

(R(x) :-a1, . . . ,ai , lookup(M,k,v),ai+2, . . . ,am .) ∈ P
Q(y) ∈ {a1, . . . ,am} a1, . . . ,am ⊢ M = yj
(Q :T1 × . . . ×Tn | F ,G) ∈ Σ (J { j) ∈ F

(R(x) :-a1, . . . ,ai ,φQ,j(y J ,k,v),ai+2, . . . ,am .) ∈ CtxFusionTransRules(Σ, P)

CtxFusionTrans-Retain

(R(x) :-a1, . . . ,am .) ∈ P
CtxFusionTrans-Replace not applicable

(R(x) :-a1, . . . ,am .) ∈ CtxFusionTransRules(Σ, P)
Rule CtxFusionTrans-Init derives the initial φR,i rule for any R that has a functional dependency
I { i with column i being a Map. Given xI and k , the initial rule uses a1, . . . ,am to uniquely obtain
xi and then perform a lookup on that. In the subsequent rules, we try to eliminate the invocation
of lookup and with it the need for obtaining the map xi explicitly.
Rules CtxFusionTrans-Unfold and CtxFusionTrans-Bound have the same premises. They check

if lookup is invoked on an explicitly constructed map. To this end, we check if any of the atoms
a1, . . . ,am is an invocation of !bind and if the !bind-constructed map M is used in lookup. We
write a1, . . . ,am ⊢ xi = M to mean that xi andM unify to the same logic variable under a1, . . . ,am ,
which is decidable in Datalog. If so, we know that the lookup occurs on top of M . We can thus
inline lookup. Rule CtxFusionTrans-Unfold captures the case where k , k ′ and lookup thus must
continue on the rest of the mapM ′. Since the resulting rule still contains lookup, we add the rule to
Step z+1(Σ, P) to allow further transformation. Rule CtxFusionTrans-Bound captures the case where
k = k ′, so that we can yield v = v ′. Since CtxFusionTrans-Bound fully eliminated the lookup call,
we add the resulting rule to the output of the transformation.

Rule CtxFusionTrans-Delegate checks if lookup is invoked on a context obtained from another
relation. That is the case if any of the atoms a1, . . . ,am is a query Q(y) and the map xi corresponds
to yj for some j. Now, if Q has a functional dependency J { j and uniquely determines the map
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yj , then we can use the φQ , j relation we created in CtxFusionTrans-DeriveSig for Q . That is, we
delegate the search in R and continue searching in Q , which may lead to a (mutually) recursively
defined search relation.
Rules CtxFusionTrans-Replace and CtxFusionTrans-Retain propagate the original rules from P.

Rule CtxFusionTrans-Replace applies to rules that contain a lookup on a map that is uniquely
obtained from relation Q . We replace these lookups by the corresponding search φQ , j . Rule
CtxFusionTrans-Retain copies over all other rules unchanged.

Note that it is possible for rules to starve ruleswithin Step z that nevermake it toCtxFusionTransRules.
This is intended and accounts for the cases where the original lookup would have failed as well. In
particular, a lookup on an empty map will not result in a CtxFusionTransRules rule.

4.3 Example revisited
We illustrate the step-wise application of CtxFusionTransRules to the relevant rules of the simply
typed lambda calculus.
Input rules:
πtyped(e1,C) :- ?app(e, e1, e2), πtyped(e,C).
πtyped(e2,C) :- ?app(e, e1, e2), πtyped(e,C).
πtyped(b,C

′) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C).
πtyped(e,C) :- ?main(p, e), !empty(C).
typed(e,T ) :- πtyped(e,C), ?var(e, x), lookup(C, x,T ).

Step 0(Σ, P):
φtyped(e1,k,v) :- ?app(e, e1, e2), πtyped(e,C), lookup(C,k,v).
φtyped(e2,k,v) :- ?app(e, e1, e2), πtyped(e,C), lookup(C,k,v).
φtyped(b,k,v) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C), lookup(C

′,k,v).
φtyped(e,k,v) :- ?main(p, e), !empty(C), lookup(C,k,v).

Step 1(Σ, P):
φtyped(b,k,v) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C), k , x, lookup(C,k,v).

CtxFusionTransRules(Σ, P):
φtyped(e1,k,v) :- ?app(e, e1, e2), πtyped(e,C), φtyped(e,k,v).
φtyped(e2,k,v) :- ?app(e, e1, e2), πtyped(e,C), φtyped(e,k,v).
φtyped(b,k,v) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C), k = x, v = T1.
φtyped(b,k,v) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), πtyped(e,C), k , x, φtyped(e,k,v).
typed(e,T ) :- πtyped(e,C), ?var(e, x), φtyped(e, x,T ).

A subsequent optimization of the derived rules will remove all invocations of πtyped and !bind.
This is supported by our implementation and will yield exactly those rules shown in Section 4.1.

4.4 Optimizing Search Relations φR
Our transformation CtxFusionTrans successfully eliminated all intermediate contexts and introduced
a bottom-up find function instead. As wewill show in our empirical evaluation, the resulting Datalog
code yields far superior incremental performance. However, there is one issue we need to take care
of first: The derived find relations φR enumerate all referable bindings, not just those required by
actual references.

Consider the example term λx :Unit. (1+2)+ (3+4), where we used additions and numeric literals
for convenience. Although this program contains no variable references, φtyped contains all of the
entries shown in the table on the right. That is, φtyped contains one entry for each variable and
each expression where that variable is in scope. This does not scale very well and it is unnecessary.
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φtyped e x T

1 x Unit
2 x Unit
1 + 2 x Unit
3 x Unit
4 x Unit
3 + 4 x Unit
(1 + 2) + (3 + 4) x Unit

Indeed it is sufficient to consider variables that are
being referenced in an expression. Fortunately, we can
derive an optimized version of φtyped by restricting its
entries. Specifically, we implemented a simple magic set
transformation [Beeri and Ramakrishnan 1991] to derive
a helper relation ρR that restricts φR to those tuples for
which a lookup is needed. In particular, when φR cor-
responds to variable lookup, ρR corresponds to the free
variables of an expression. We restrict φR to those tuples
that ρR considers relevant:
φtyped(e1,k,v) :- ρtyped(e1,k), ?app(e, e1, e2), φtyped(e,k,v).
φtyped(e2,k,v) :- ρtyped(e2,k), ?app(e, e1, e2), φtyped(e,k,v).
φtyped(b,k,v) :- ρtyped(b,k), ?lam(e, x,T1,b), k = x, v = T1.
φtyped(b,k,v) :- ρtyped(b,k), ?lam(e, x,T1,b), k , x, φtyped(e,k,v).

ρtyped(e, x) :- ?var(e, x).
ρtyped(e,k) :- ?app(e, e1, e2), ρtyped(e1,k).
ρtyped(e,k) :- ?app(e, e1, e2), ρtyped(e2,k).
ρtyped(e,k) :- ?lam(e, x,T1,b), k , x, ρtyped(b,k).

For λx :Unit. (1+2)+(3+4), relation ρtyped remains empty since no free variables occur. Consequently,
φtyped is empty as well. Our implementation supports this optimization.

5 TRANSFORMATION 3: COLLECTING ERRORS
The traditional formulation of type systems is focused on deciding if a term is well-typed or ill-typed:
There either exists a typing derivation or not. However, applications of type systems need more
detailed information, namely the reason(s) a typing derivation could not be constructed. In this
section, we propose an alternative formulation of type systems that separates finding a term’s type
from reporting type errors. This allows us (i) to sometimes find a term’s type even though there
are type errors and (ii) to report multiple type errors for the same term. We present a Datalog
transformation that automatically transforms a traditional type system into one with separate
error collection. Our transformation is compatible with the previous two transformations from
Sections 3 and 4, but it does not require them and can be used independently.

5.1 Collecting Errors by Example
We illustrate how our transformation works by considering the simply typed lambda calculus
again. However, to showcase that our transformation can be used independently from the other
two transformations, we start with the original type rules from Section 2:

typed(C, e,T ) :- ?unit(e), !Unit(T ).
typed(C, e,T ) :- ?app(e, e1, e2), typed(C, e1,Te ), ?Fun(Te ,T1,T ), typed(C, e2,T1).
typed(C, e,T ) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), typed(C

′,b,T2), !Fun(T ,T1,T2).
typed(C, e,T ) :- ?var(e, x), lookup(C, x,T ).

ok(p) :- ?main(p, e), !empty(C), typed(C, e,T ).

The construction of a typing derivation fails when premises are unsatisfiable. However, different
premises have different purposes and require different error handling. Therefore, we categorize
premises as follows:
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• ReportStuck is the set of relations whose stuckness should result in a type error. We
only track the premises occurring in rules of ReportStuck relations. For our example,
ReportStuck = {typed, ok}.

• For every R ∈ ReportStuck, IgnoreStuckR is the set of relations that should be ignored
when they occur as premises. We use IgnoreStuck for those constraints that merely help
select the right type rule. For our example, IgnoreStucktyped = {?unit, ?app, ?lam, ?var}
and IgnoreStuckok = {?main}.

• Some premises R(x) are known to be infallible and can be ignored during error handling. In
our example, !Unity(T ) amongst others will never fail and thus cannot produce a type error.

Based on this categorization, we can systematically derive relations εtyped :C × e × Error and
εok :p × Error that collect the errors that can occur during type checking:

εtyped(C, e, err) :- ?app(e, e1, e2), εtyped(C, e1, err ).
εtyped(C, e, err) :- ?app(e, e1, e2), typed(C, e1,Te ), ¬?Fun(Te ,T1,T ), err =“expected Fun type”
εtyped(C, e, err) :- ?app(e, e1, e2), εtyped(C, e2, err).
εtyped(C, e, err) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), εtyped(C

′,b, err).
εtyped(C, e, err) :- ?var(e, x), ¬lookup(C, x,T ), err =“lookup failed”.

εok(p, err) :- ?main(p, e), !empty(C), εtyped(C, e, err).

There is no rule for unit because its first premise is in IgnoreStucktyped and its second premise is
infallible. For app we obtain three rules. First, if there are type errors in e1, we propagate those.
We stripped most other premises because they are irrelevant for the recursive call εtyped(C, e1, err).
Second, if the typeTe of e1 is not a function type (note the negation ¬ in front of ?Fun), we generate
a new error. Third, we propagate the type errors of e2. A lam cannot introduce a new error and
only propagate type errors from the lambda’s body. For var we obtain a new type error when the
lookup fails (again note the negation ¬).
Note that the collected type errors are not unique; an expression can have multiple errors. For

example, both subterms of an app expression can propagate type errors. The derived εR relations
collect all type errors that occur in the program, which was one of our declared goals.
Our other goal was to find a type despite type errors when possible. To this end, we refine

what it means for a term to be well-typed in our encoding: A term is well-typed if we can find
its type and there is no type error for it. That is, rather than only requiring (C, e,T ) ∈ typed,
we additionally require (C, e, err) < εtyped for any err . This allows us to retain tuples in typed
even when an expression contains type errors. Our transformation exploits this to relax the rules
of typed: Premises that merely perform a check are discarded. For example, our transformation
removes the check on an app’s argument e2 and on the body of main. The other rules are unaffected:

typed(C, e,T ) :- ?unit(e), !Unit(T ).
typed(C, e,T ) :- ?app(e, e1, e2), typed(C, e1,Te ), ?Fun(Te ,T1,T ).
typed(C, e,T ) :- ?lam(e, x,T1,b), !bind(C ′,C, x,T1), typed(C

′,b,T2), !Fun(T ,T1,T2).
typed(C, e,T ) :- ?var(e, x), lookup(C, x,T ).

ok(p) :- ?main(p, e).

5.2 Formalizing Transformation CollectErrorsTrans
We formalize the transformation CollectErrorsTrans that we exemplified above. The transformation
takes a Datalog program as input and rewrites it to generate relations εR and to relax existing rela-
tions. The transformation is parametric in the sets ReportStuck and IgnoreStuckR as described
above. We first derive the new signatures and then update and add rules to the Datalog program.
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CollectErrorsTrans signatures. Let Σ be the set of relational signatures of the input Datalog
program. The rewritten Datalog program has signatures CollectErrorsTrans(Σ) defined as follows:

CollectErrorsTrans-DeriveSig

(R :T1 × . . . ×Tn | F ,G) ∈ Σ R ∈ ReportStuck
J = {1, . . . ,n} \ {i | (I { i) ∈ F }

(εR :TJ × Error| ∅, ∅) ∈ CollectErrorsTransSigs(Σ)

CollectErrorsTrans-RetainSig
(R :T1 × . . . ×Tn | F ,G) ∈ Σ

(R :T1 × . . . ×Tn | F ,G) ∈ CollectErrorsTransSigs(Σ)

The first transformation rule adds new signatures εR for those relations R that are in ReportStuck.
The new relation has all columns of R except for those that are functionally dependent. For an
algorithmic type system this means that the error relation does not track the computed type.
In addition to the columns of R, the error relation εR has a new column of type Error. A tuple
(t1, . . . , tn, err) ∈ εR means that R is stuck for (t1, . . . , tn). The second transformation rule retains
the signatures of all existing relations.

CollectErrorsTrans rules. Let Σ be the set of relational signatures of the input Datalog program
and let P be the set of rules of the input Datalog program. Then the rewritten Datalog program has
rules CollectErrorsTransRules(Σ, P) defined as follows.

CollectErrorsTrans-Propagate

(R(x) :-a1, . . . ,ak , Q(y),ak+2, . . . ,am .) ∈ P A = {a1, . . . ,ak ,ak+2, . . . ,am}

R ∈ ReportStuck Q ∈ ReportStuck
(R :T1 × . . . ×Tn | FR,GR ) ∈ Σ J = {1, . . . ,n} \ {i | (I { i) ∈ FR }
(Q :T1 × . . . ×Tl | FQ ,GQ ) ∈ Σ K = {1, . . . , l} \ {i | (I { i) ∈ FQ }

(εR(x J , err) :- sliceyK (A), εQ(yK , err).) ∈ CollectErrorsTrans(Σ, P)

CollectErrorsTrans-NewError

(R(x) :-a1, . . . ,ak , Q(y),ak+2, . . . ,am .) ∈ P A = {a1, . . . ,ak ,ak+2, . . . ,am}

R ∈ ReportStuck Q < ReportStuck
Q < IgnoreStuckR Q(y) is fallible

(R :T1 × . . . ×Tn | FR,GR ) ∈ Σ J = {1, . . . ,n} \ {i | (I { i) ∈ FR }
err = new error describing the reason Q(y) got stuck

(εR(x J , err) :- slicey (A),¬Q(y).) ∈ CollectErrorsTrans(Σ, P)

CollectErrorsTrans-RetainSliced

(R(x) :-a1, . . . ,am .) ∈ P R ∈ ReportStuck
A = {Q(y) | Q(y) ∈ {a1, . . . ,am},Q ∈ IgnoreStuckR }

(R(x) :-A, slice x ({a1, . . . ,am} \A).) ∈ CollectErrorsTrans(Σ, P)

CollectErrorsTrans-RetainNormal
(R(x) :-a1, . . . ,am .) ∈ P R < ReportStuck
(R(x) :-a1, . . . ,am .) ∈ CollectErrorsTrans(Σ, P)

Rule CollectErrorsTrans-Propagate generates a Datalog rule that propagates errors from sub-
derivations upwards. Given the rule of a relation R ∈ ReportStuck, if R calls another relation
Q ∈ ReportStuck, then we want to forward the errors of Q . Thus, we generate a rule for εR that
forwards error err obtained from εQ . Since we dropped functionally dependent columns from error
relations, we select the appropriate variables x J and yK to call εR and εQ respectively. Finally, we
copy a slice of the other atoms A to the resulting rule, namely those that contribute to the call of
εQ . This slicing is important for correctness. For example, consider a type rule for binary addition

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Systematic Approach to Deriving Incremental Type Checkers 1:17

e1 + e2. Without slicing, we would get the following error rules amongst others:

εtyped(C, e, err) :- ?add(e, e1, e2), εtyped(C, e1, err), ?Nat(T1), typed(C, e2,T2), ?Nat(T2).
εtyped(C, e, err) :- ?add(e, e1, e2), typed(C, e1,T1), ?Nat(T1), εtyped(C, e2, err), ?Nat(T2).

These rules work fine if one of the operands is ill-typed. But if both operands are ill-typed at the
same time, neither rule can fire because of the remaining typed constraint on the other operand.
Slicing eliminates this problem by discarding those premises that do not help to discover the
propagated error.

The second transformation rule CollectErrorsTrans-NewError generates error rules for the origin
of a stuck premise. If a relation R ∈ ReportStuck calls another relation Q < ReportStuck that is
fallible and should not be ignored, then we derive a corresponding error rule. The derived error
rule yields a new error description err if ¬Q(y), that is, the premise on Q fails. Like in the previous
transformation rule, we use slicing to ensure the error rule can fire.
Transformation rule CollectErrorsTrans-RetainSliced carries out the relaxation of the original

rules for R ∈ ReportStuck. Once again we use slicing, this time to drop premises ai that do not
contribute to discovering the derivable tuples of R . However, the premises A that were ignored by
the error rules may never be relaxed. Transformation rule CollectErrorsTrans-RetainNormal retains
all other Datalog rules unchanged.

5.3 Optimizing Error Propagation
The transformation described above generates rules that propagate errors. In general, this propaga-
tion is necessary to ensure we recognize a term as ill-typed when a type error occurs in a subterm.
But the propagation of errors also induces a performance overhead: If an error occurs deeply nested
in a subterm, that error will be associated with the subterm and all its ancestors. Thus, when the
programmer introduces or fixes a type error, the corresponding error propagation takes time.
We found that for many type systems we can eliminate error propagation. If a type system

visits all nodes of the syntax tree, an explicit propagation of errors toward the root is unnecessary.
Instead, we can refine well-typedness once more and require all subterms to be free of type errors:
p is well-typed if and only if p ∈ ok and (e, err) < εok for any subterm e of p and any err . With this
definition it is sufficient to find the sources of errors, but it is not necessary to propagate them.
We can easily adapt our transformation by removing rule CollectErrorsTrans-Propagate, such that
error relations εR are only filled according to CollectErrorsTrans-NewError. Moreover, the resulting
error relations are perfectly suited for programming editors and compilers, which can extract type
errors their origin.

6 IMPLEMENTATION: A TYPE-SYSTEM DSL COMPILED TO DATALOG
We have implemented a domain-specific language (DSL) for
describing textbook-like type systems. In our DSL, the pro-
grammer can declare arbitrary judgments with mixfix syntax.
These judgments can then be used to define type rules. The
screenshot on the right shows part of a type system specifica-
tion as an example of our DSL. We implemented the DSL as a
metalanguage in the projectional language workbench MPS.1
That is, our DSL can be used to define the type system of other languages defined with MPS.

1https://www.jetbrains.com/mps
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We developed a compiler for our DSL that generates Datalog code using the transformations
described in this paper. Specifically, we generate code conforming to the Datalog dialect of IncA [Sz-
abó et al. 2018a, 2016], an incremental Datalog-based static analysis framework. There are few
differences between the transformations in our implementation and the transformations described
in the paper:

• In our DSL, the premises of type rules are ordered and the judgments declare input-like and
output-like columns. We use this information to reason about metavariable bindings. For
example, we require metavariable C to be bound before using it in a premise C ⊢ e : T .

• Since we can reason about metavariable bindings in the implementation, slicing becomes
easier. Where we used sliceX (A) in the paper, our implementation can easily decide which
atoms A are relevant.

• As usual in the type systems literature, but unlike our Datalog encodings, the conclusions
of type rules in our DSL express a few syntactic constraints. Usually, these are used to
dispatch the current term to the appropriate type rule. By default, our implementation of
CollectErrorsTrans uses the constraints found in the conclusion as IgnoreStuck, such that
no explicit declaration of IgnoreStuck is required.

• In addition to the transformations described in the paper, our implementation can also
handle infinite relations with neither functional nor co-functional dependencies. For such
relations, our implementation resolves to generating non-incremental Java code that can be
invoked from within the Datalog rules. This is reasonable for embedding short yet intractable
computations within a larger incremental computation. For example, this extension enabled
us to support polymorphic types in our case studies.

The implementation is available open source at link to be added after double-blind reviewing.

7 CASE STUDIES
We conducted case studies to explore the expressivity of our DSL and of the underlying Datalog
transformations. Using our DSL, we specified a range of type systems and compiled them to Datalog.
In this section, we provide an overview of type system features we successfully encoded and discuss
limitations.

Simple types. We encoded PCF, a simply typed lambda calculus with numeric literals, addition,
if-zero, and fix. PCF extends our running example and the specification looks much the same. We
also used PCF for benchmarking, which we discuss in Section 8.

Products and sums. To confirm that the DSL and Datalog transformations can handle types
for compound data, we modeled product and sum types. The type rules in our DSL closely follow
the rules described in Types and Programming Languages [Pierce 2002]. Our compiler translates the
extended specification to incrementally executable Datalog code without difficulty. It is reassuring
to see that our transformation rules are unchallenged by simple extensions.

Bi-directional type checking. Bi-directional type checking is
a form of local type inference. The challenge of bi-directional type
checking for our DSL is that there are two mutually recursive typ-
ing relations: one for checking and one for inferring types. Our
transformations can handle this scenario since we never relied on
the recursive structure of the typing relation, and since the under-
lying Datalog solver can compute mutually recursive Datalog relations. We can thus incrementalize
bi-directional type systems.

Overloading.Whenwe introduced co-functional dependencies, we argued that in an algorithmic
type system all contextual information is co-functionally dependent on the syntax-tree node. This
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is because each syntax-tree node is visited at most once per relation (syntax-directedness), and the
relevant context information must not be guessed to avoid backtracking. To explore if the type
system necessarily has to be algorithmic, we modeled simple operator overloading. Specifically, we
added floating-point numbers to PCF such that there are two type rules for the + operator: one for
integers and one for floating-point numbers. This type system is not algorithmic, since we have to
try out multiple type rules when encountering a + operator. Hence, the question arises whether
the typing context is co-functionally dependent nonetheless, or if our transformations fail. As it
turns out, overlapping type rules are not an issue for co-functional dependencies as long as all
overlapping rules treat the contextual information uniformly. We believe that this usually is the
case: The syntactic form governs the threading of contextual information, not the particular type
rule applied.

Universal types. We extended PCF with universal types in the style of System F. The main
challenge for incrementality and our transformations is the substitution function on types, that
the type system uses to instantiate universal types. As a relation, type substitution takes the form
tsubst :T × X ×T ×T for types T and type variables X . This relation is infinite and there are no
co-functional dependencies. Therefore, our transformations cannot make this relation compatible
with bottom-up evaluation and thus not incremental. In such cases, our implementation falls
back to generating non-incremental Java code that is being invoked from within the incremental
Datalog code. This is acceptable when only a small portion of the overall computation becomes
non-incremental. For universal types, only type substitution is non-incremental, while tree traversal,
variable lookups, type propagation, etc. are fully incremental.

Limitations.We are aware of a few limitations that we want to disclose. First, our DSL currently
does not provide support for handling lists, which makes it difficult to encode type system features
such as records, variants, or functions with multiple parameters. This is a DSL limitation, not a
limitation of our approach of generating incremental Datalog programs. Second, since type substi-
tution is difficult to incrementalize (see universal types), unification is difficult to incrementalize.
Therefore, it is not clear if type systems with Hindley-Milner type inference can be supported by our
approach. Third, we investigated if our approach can support languages with nominal subtyping.
Like type substitution, subtyping is an infinite relation without co-functional dependencies, and
we must resolve to generating non-incremental Java code. However, nominal subtyping is not
self-contained and requires access to the class table of the program in order to decide C <:D. This
induces additional constraints on when to rerun a subtype check, which we cannot currently trace.

8 PERFORMANCE EVALUATION
We present a preliminary performance evaluation of our approach using a type checker for PCF and
synthesized subject programs. Our goal is to assess the incremental performance of our approach,
and to examine that impact of our transformation steps on the performance. We compare to a
non-incremental recursive descent type checker written in Java.

We synthesize two PCF programs Star and Chain that have intricate dependencies and challenge
our incremental approach. Star consists of n functions all calling f0. Chain consists of n functions
each calling fn−1. These programs allow us to introduce changes with global effect on type checking.

Star :
let f0 = λx :Nat. 1 + x in
let f1 = λx :Nat. 1 + f0(x),
. . . ,
fn = λx :Nat. 1 + f0(x) in
1 + f0(1)

Chain:
let f0 = λx :Nat. 1 + x in
let f1 = λx :Nat. 1 + f0(x) in
. . .
let fn = λx :Nat. 1 + fn−1(x) in
1 + fn(1)
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B 6.24
T1 260.48 0.02±0.00 35.11±1.23 34.42±1.11 36.86±1.15 61.16±0.96 34.92±1.36
+T2 314.74 0.07±0.05 32.56±1.46 34.37±1.46 31.83±1.22 53.14±0.66 30.91±1.36
+T3 320.91 0.06±0.00 0.17±0.02 0.10±0.00 43.91±0.57 42.96±0.57 20.98±0.78

Ch
ai
n

B 49.31
T1 176.00 0.06±0.02 85.61±8.58 127.26±4.25 126.99±4.74 44.44±2.00 47.32±2.32
+T2 1016.76 0.02±0.00 82.45±3.80 79.02±3.45 87.60±4.69 87.27±4.42 82.00±3.89
+T3 1040.44 0.02±0.00 0.08±0.00 0.096±0.00 1.46±0.07 1.71±0.08 1.16±0.07

Fig. 1. Summary of the measurement results. All values are in milliseconds. For average update times, we
also show the 95% confidence interval. B stands for the non-incremental baseline type checker. T1 is short for
CoFunTrans, T2 is CtxFusionTrans, and T3 is CollectErrorsTrans. Our DSL yields the (T1+T2)+T3 running times.

We generate small IDE-style program changes (as opposed to larger commit-style changes) for our
evaluation. Our changes are local and only affect a single subterm. To stress-test our approach, we
always apply changes to f0, which all other functions (transitively) depend on. We consider the
following 6 kind of changes and their inverse undo changes:

• Num: Increment the value of a numeric literal by 1.
• Ref : Change a variable reference to an unbound name.
• Param: Change the parameter name of a lambda abstraction.
• Anno: Change the type annotation of a lambda abstraction.
• Lambda: Insert a lambda abstraction in the body of an existing lambda abstraction.
• AddApp: Change an addition to an application while retaining the original operands.

Note that, except for Num, all of the above changes will result in an ill-typed program. We believe
this realistically reflects programming sessions, where a developer changes one piece at a time.

We consider 4 type checker implementations:
• B: baseline type checker, non-incremental, written as a recursive Java function.
• T1: incremental checker, only using our first transformation CoFunTrans.
• T1+T2: incremental checker, additionally using our second transformation CtxFusionTrans.
• T1+T2+T3: incremental checker, additionally using our third transformationCollectErrorsTrans.

For the measurements, we synthesize subject programs Star and Chain with n = 200. We apply
each change and its undo 40 times after warmup. We measure the initial analysis time and the time
it takes to process a change. We performed our benchmarks on a machine with an Intel Core i7 at
2.7 GHz with 16 GB of RAM, running 64-bit OSX 10.15.4, Java 1.8.0_222, and MPS version 2019.1.6.

Results. Figure 1 shows a summary of our measurement results. First, let us discuss the per-
formance of the final transformation stage T1+T2+T3 that our DSL uses and compare it to the
non-incremental baseline type checker. We observe that the incremental update times are really fast;
they are at most several tens of milliseconds, which is exactly what we expect from a type checker
running in an IDE. The initialization time is at most a second, which we consider acceptable, as this
is a one-time cost. The run time of the baseline analysis is also fast. This is not surprising because
our subject programs are small. However, incrementalization brings significant performance gains
most of the time compared to the baseline version. For example, for Num, Ref, and Param changes
we see multiple orders of magnitude speedups. We also see slowdowns in certain cases: For the
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Star program the Anno, Lambda, and AddApp changes induce an order of magnitude slowdown.
This is due to the global effect these changes have on the program, which our incremental analysis
has to retrace. But even in these cases, the incremental running times are still much faster than the
initial run of our analysis. In future work, we will try to speed up the initial analysis run, which
should improve the performance for changes with global effect.

Let us now examine the effect of our transformations on the performance. ForCtxFusionTrans (T2),
the Chain program is interesting because it requires a long threading of typing contexts. When we
change the type of f0 (changes Param and Anno), all threaded contexts become invalid. However,
for changes Lambda and AddApp we can observe a negative effect of CtxFusionTrans. This is
because those changes eliminate the binding of f0 altogether, since its definition becomes ill-typed.
Transformation CollectErrorsTrans (T3) recovers these losses. Indeed, CollectErrorsTrans (T3) induces
a significant speedup most of the time. This is because error collection makes the entire typeOf
relation more resilient to changes. That is, the type checker can endure ill-typed terms and reuse
the tuples in the relation more frequently. As it turns out, this separation of type inference and
error collection is key to fast incremental type checking.

Given that incrementalization comes with extensive caching, we also benchmarked the memory
overhead of our type checkers. We found that on average the memory overhead is around 10 MB,
which is a negligible value compared to the 2 GB memory consumption of the IDE itself.

To summarize, we find that the incremental performance of our type checker is suitable for appli-
cations in IDEs. We often achieve order-of-magnitude speedups compared to the non-incremental
baseline analysis. We pay the price for this with occasional slowdowns in update times and longer
initialization time. The memory overhead of our approach is negligible for our synthesized pro-
grams.

9 RELATEDWORK
IncA [Szabó et al. 2016] is an incremental static analysis framework based on Datalog. We use IncA
in our work as the incremental evaluation engine for the Datalog code we generate. Specifically, we
show how to systematically construct type checkers that can then be automatically incrementalized
by IncA. IncA has been shown previously to deliver fast incremental updates for a range of program
analyses: FindBugs-style linting, control-flow analysis [Szabó et al. 2016], data-flow analyses [Szabó
et al. 2018a], and overload resolution [Szabó et al. 2018b]. This paper is the first to generate IncA
code from high-level specifications.

Typol [Despeyroux 1984] translates inference rules to Prolog. In contrast to Datalog, Prolog is a
Turing-complete language and supports infinite relations that are explored on-demand through
top-down evaluation. Thus, we face the more difficult challenges of translating inference rules into
a style that permits the bottom-up evaluation of logic programs. Attali et al. [1992] implemented an
incremental evaluator for Typol programs. However, for fast incremental update times, the context
is not allowed to change. If the context changes in any way, type checking has to be started from
scratch for the affected expressions. In contrast, we derive a Datalog program that is resilient to
such changes.
Wachsmuth et al. [2013] propose a task engine for incremental name and type analysis. Tasks

tend to be small and inter-dependent, encoding fine-grained dependencies. When a file changes,
they (re)generate tasks for the entire file. Task evaluation relies on a cache of previous task results,
only recomputing tasks that are new. If a change affects a task, its cache entry is invalidated and
the task reevaluated. The task engine then triggers the reevaluation of all transitively dependent
tasks. In contrast to this specialized approach, we rely on a generic incremental compilation target,
namely Datalog. The transformations we presented in this paper enable us to handle type systems
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based on standard typing rules, whereas the task engine requires language-specific rules for task
generation.
Erdweg et al. [2015] introduce a co-contextual formulation of type checking. Similar to our

approach, co-contextual type checking eliminates context propagation. However, while we synthe-
size a find relation to lookup bindings as needed, co-contextual type checkers propagate lookup
constraints when encountering a variable. This makes co-contextual type checkers compositional,
allowing subderivations to be reused even when context information changes. The caveat of co-
contextual type checking is that incremental performance heavily relies on constraints being locally
solved in the subderivations, which often is not the case [Kuci et al. 2017]. In our solution, we use
Datalog’s dependency tracking instead of trying to fit dependencies into a compositional structure.
The work on incremental type checking for the programming language B [Meertens 1983]

decorates the syntax tree with the type requirements known for a specific node. When changing a
node in the syntax tree, the decorated node is deleted which is followed by inserting the newly
decorated node while reusing the decorated children of the deleted node. This technique only
works because B does not support type declarations for variables but infers the type by discovering
type requirements based on the usage of the variable. Hence, the type system of B does not require
top-down context propagation, which we support by utilizing co-functional dependencies. As our
case studies indicate, our approach is applicable to many type systems.
Busi et al. [2019] propose to incrementalize type checking by deriving type rules that utilize

memoization. This allows the reuse of parts of the typing derivation when code changes occur.
However, as soon as any part of the context or the expression is changed, the entire subderivation
has to be reconstructed. Our approach uses much more fine-grained dependency tracking. In
particular, our second transformation enables us to track individual bindings rather than entire
contexts, which our evaluation confirmed to be essential for incremental type checking.

Datafun [Arntzenius and Krishnaswami 2020] is a higher-order functional language that incor-
porates Datalog’s semi-naive bottom-up evaluation. While Datafun does not aim for incrementality,
it would be interesting to see if our transformations can expand the expressivity of Datafun. Specif-
ically, it would be interesting to demonstrate that the bottom-up computable Datalog code we
generate indeed is admitted by Datafun’s type system. Their type system enforces monotonicity
constraints that our Datalog solver relies on, too.
The transformation we presented in Section 3 has a strong resemblance with magic set trans-

formations [Beeri and Ramakrishnan 1991], which are well-known in the Datalog community.
Like our transformation, a magic set transformation rewrites a Datalog program to eliminate the
derivation of irrelevant (unquerried) tuples. Traditionally, magic set transformations are used as
an optimization that may filter some or all irrelevant tuples, and usually the original Datalog
program is already computable (has finite relations). In contrast, we start with an incomputable
Datalog program (infinite relations). Therefore, we developed a specialized transformation that
exploits the new concept of co-functional dependencies. Our specialized transformation allows
us to guarantee all irrelevant tuples are eliminated and that the typing relation becomes finite.
Additionally, our transformation can exploit co-functional dependencies to avoid the generation of
additional auxiliary relations that traditional magic set transformations would require.

Deforestation [Wadler 1990] is a technique to avoid intermediate immutable data structures that
are produced and immediately consumed. The context fusion transformation of Section 4 follows
the same idea. Instead of constructing intermediate maps (e.g. typing contexts) and letting the
built-in lookup relation consume them, we directly perform lookup on the data that functionally
determines the map that is passed to lookup. The consumer is fixed (lookup) in our approach,
but every relation that functionally determines a map is viable as a producer. Our technique is
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applicable to recursive Datalog programs while deforestation is an optimization technique for
functional programs.

10 CONCLUSION
We proposed a novel approach to systematically deriving incremental type checkers based on
textbook-style type rules. Our solution is divided into three different transformations. The first
transformation utilizes co-functional dependencies to translate type rules to Datalog such that
bottom-up evaluation succeeds. The second transformation eliminate dependencies on compound
data such as typing contexts to achieve more efficient incremental performance. And the third
transformation separates the error collection from the type rules, which is interesting even outside
of this work. We showcased that our transformations can handle different type system features
such as sum and product types, overloading, universal types, and bi-directional type checking.
Further, we performed a preliminary performance evaluation to demonstrate that the derived type
checkers indeed achieve fast incremental update times.
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