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Abstract. Abstract interpretation is a technique to define sound static
analyses. While abstract interpretation is generally well-understood, the
analysis of program transformations has not seen much attention. The
main challenge in developing an abstract interpreter for program trans-
formations is designing good abstractions that capture relevant informa-
tion about the generated code. However, a complete abstract interpreter
must handle many other aspects of the transformation language, such as
backtracking and generic traversals, as well as analysis-specific concerns,
such as interprocedurality and fixpoints. This deflects attention.
We propose a systematic approach to design and implement abstract in-
terpreters for program transformations that isolates the abstraction for
generated code from other analysis aspects. Using our approach, anal-
ysis developers can focus on the design of abstractions for generated
code, while the rest of the analysis definition can be reused. We show
that our approach is feasible and useful by developing three novel inter-
procedural analyses for the Stratego transformation language: a single-
ton analysis for constant propagation, a sort analysis for type checking,
and a locally-illsorted sort analysis that can additionally validate type
changing generic traversals.

1 Introduction

Abstract interpretation is a technique to define sound static analyses [6]. Static
analyses have proved useful in providing feedback to developers (e.g., dead
code [4], type information), in finding bugs (e.g., uninitialized read [25], type er-
rors [20]), and in enabling compiler optimizations (e.g., constant propagation [3],
purity analysis [21]). It is therefore no surprise that the field of abstract inter-
pretation and static analysis has seen significant attention both in academia and
industry.

Unfortunately, the analysis of program transformations has not seen much at-
tention so far. Program transformations are a central tool in language engineering
and modern software development. For example, they are used for code desugar-
ing, macro expansion, compiler optimization, refactoring, migration scripting, or
model-driven development. The development of such program transformations
tends to be difficult because they act at the metalevel and should work for a
large class of potential input programs. Yet, there are hardly any static analyses
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for program transformation languages available, and it appears to be difficult to
develop such analyses. To this end, we identified the following challenges:

Domain-Specific Features Program transformation languages such as Strat-
ego [24], Rascal [14], and Maude [5] aim to simplify the development of
program transformations. Therefore, they provide domain-specific language
features such as rich pattern-matching, backtracking, and generic traversals.
These domain-specific language features usually cannot be found in other
general-purpose languages and the literature on static analysis provides only
little guidance on how to tackle them.

Term Abstraction Programs are first-class in program transformations and
are represented as terms (e.g., abstract syntax trees). Therefore, analysis de-
velopers need to find a good abstraction for terms, such as syntactic sorts
or grammars [8]. This term abstraction heavily influences the precision and
usefulness of the analysis and most of the analysis development effort should
be spent on the design of this abstraction. We expect analysis developers to
experiment with alternative term abstractions: The design of good abstract
domains is inherent to the development of any abstract interpreter and cannot
be avoided.

Soundness Developing an abstract interpreter that soundly predicts the gen-
erated code of program transformations is difficult. This is because real-world
transformation languages have many edge cases and an abstract interpreter
has to account for all of these edge cases to be sound. Furthermore, transfor-
mation languages often do not have a formal semantics, which makes it hard
to verify that the abstract interpreter covered all cases.

In this paper we present a systematic approach to develop abstract inter-
preters for program transformation languages that addresses these challenges.
It is based on the well-founded theory of compositional soundness proofs [13]
and reusable analysis components [12]. In particular, our approach captures the
core semantics of a transformation language with a generic interpreter [13] that
does not refer to any analysis-specific details. This simplifies the analysis of
the domain-specific language features. Furthermore, our approach decouples the
term abstraction from the remainder of the analysis through an interface. This
means that any term abstraction that implements this interface gives rise to a
complete abstract interpreter. Thus, analysis developers can fully focus on devel-
oping good term abstractions. Lastly, our approach reuses language-independent
functionality, such as abstractions for environments, exceptions and fixpoints,
from the Sturdy standard library. This not only reduces the analysis development
effort, but also simplifies its soundness proof as we can rely on the soundness
proofs of the Sturdy library [12].

We demonstrate the feasibility and usefulness of our approach by developing
abstract interpreters for Stratego [24]. Stratego is a complex dynamic program
transformation language featuring rich pattern matching, backtracking, generic
traversals, higher-order transformations, and an untyped program representa-
tion. Despite these difficulties, based on our approach we developed three novel
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abstract interpreters for Stratego: We developed a constant propagation anal-
ysis, a sort analysis, which checks that transformations are well-typed, and an
advanced sort analysis, which can even validate type-changing generic traver-
sals which produce ill-sorted intermediate terms. Our systematic approach was
crucial in allowing us to focus on each of these abstract domains without be-
ing concerned with other aspects of the Stratego language. We implemented the
analyses in Haskell in the Sturdy analysis framework and the code of the analyses
is open-source.1

In summary, we make the following contributions:

– We propose a systematic approach to the development of abstract inter-
preters for program transformations, that lets analysis developers focus on
designing the term abstraction.

– We show that many features of program transformation languages can be
implemented on top of existing analysis functionality and do not require
specific analysis code.

– We demonstrate the feasibility and usefulness of our approach by applying
it to Stratego, for which we develop three novel abstract interpreters.

2 Illustrating Example: Singleton Analysis

The static analysis of program transformations can have significant merit help-
ing developers to understand and debug their code and helping compilers to
optimize the code. For example, we would like to support the following analy-
ses: Singleton analysis to enable constant propagation, purity analysis to enable
function inlining, dead code analysis to discover irrelevant code, sort analysis to
prevent ill-sorted terms. While these and many other analyses would be useful,
their development is complicated. In this section, we illustrate our approach by
developing a singleton analysis for Stratego [24].

2.1 Abstract Interpreter for Program Transformations =
Generic Interpreter + Term Abstraction

The development of analyses for program transformations is complicated for two
reasons. First, each analysis requires a different term abstraction, with which it
represents the generated code. The choice of term abstraction is crucial since
it directly influences the precision, soundness, and termination of the analy-
sis. Second, program transformation languages provide domain-specific language
features such as rich pattern matching, backtracking, and generic traversals.
Soundly approximating these features in an analysis is not easy, and resolving
this challenge for each analysis anew is impractical.

In this paper, we propose a more systematic approach to developing static
analyses for program transformations. To support static analyses for a given
transformation language, we first develop a generic interpreter that implements

1 https://gitlab.rlp.net/plmz/sturdy/tree/master/stratego

https://gitlab.rlp.net/plmz/sturdy/tree/master/stratego
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data Pat = Var String | As String Pat | Cons String [Pat]

| StringLit String | NumLit Int | Explode Pat Pat

match :: (IsTerm term c, ArrowEnv String term c,

ArrowExcept () c, ...) ⇒ c (Pat ,term) term

match = proc (pat ,t) → case pat of

Var "_" → returnA � t

Var x → lookup

(proc (t’,(x,t)) → do t’’ ← equal � (t,t’);

insert � (x,t’’); returnA � t’’)

(proc (x,t) → insert � (x,t); returnA � t) � (x,(x,t))

As v p → do t’ ← match � (Var v,t); match � (p,t’)

StringLit s → matchStringLit � (s,t)

NumLit n → matchNumLit � (n,t)

Cons c ps → matchCons (zipWith match) � (c,ps,t)

Explode c ts → matchExplode

(proc c’ → match � (c,c’))

(proc ts ’ → match � (ts ,ts ’)) �� t

Listing 1: Generic abstract pattern matching for Stratego.

the abstract semantics of the domain-specific language features in terms of stan-
dard language features whose abstract semantics is well-understood already. The
generic interpreter is parametric in the term abstraction, such that we can derive
different static analyses in a second step by providing different term abstractions.
This architecture enables analysis developers to separately tackle the challenge
of designing a good term abstraction.

We have developed a generic interpreter for Stratego based on the Sturdy
analysis framework [13,12] in Haskell. We explain the full details of generic in-
terpreters and background about Sturdy in Section 3. Here, we only illustrate a
small part of the generic interpreter, namely pattern matching.

Listing 1 shows the generic analysis code for pattern matching. We param-
eterized the pattern-matching function match using a type class IsTerm as an
interface. Pattern matching interacts with the term abstraction to deconstruct
terms but implements other aspects generically. In Listing 1, we have highlighted
all calls to operations of IsTerm; the remaining code is generic. We provide a
short notational introduction before delving deeper into the analysis code.

Our approach is based on Sturdy, which requires analysis code to be writ-
ten in arrow style [11]. Like monads, arrows (c x y) generalize pure functions
(x → y) to support side-effects in a principled fashion. For users of our ap-
proach, this mostly means that they have to use Haskell’s built-in syntax for ar-
rows, as shown in Listing 1. Expression (proc x → e) introduces an arrow com-
putation similar to the pure (λx → e). Do notation (do cmd∗) denotes a se-
quence of arrow commands, where each command takes the form (y ← f � x)

or (f � x) [18]. Command (y ← f � x) calls f on x and stores the result in
y; (f � x) ignores the resulting value but not the potential side-effect of f. For
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a more in-depth introduction to arrows, we refer to Hughes’s original paper [11]
and online resources such as https://www.haskell.org/arrows.

The generic analysis code for pattern matching in Listing 1 describes a com-
putation (c (Pat, t) t) that is parametric in c and t, but restricts these types
through type-class constraints. Type t must implement the term abstraction in-
terface IsTerm. Type c is an arrow that encapsulates the side-effects of the
computation and must at least support environments and exception handling.
We use these side-effects to implement pattern variables and backtracking in
match.

Computation match takes a pattern and the matchee (the term to match)
as input and yields the possibly refined term as output. For a wildcard pattern,
we yield the matchee unchanged. For pattern variables, we look up the variable
in the environment and distinguish two cases. If the variable is already bound
to t’, we require the matchee t to be equal to t’. If the variable is not bound
yet, we insert a binding into the environment. For named subpatterns (As v p),
we invoke the code for pattern variables recursively. The remaining four cases
delegate to the term abstraction, passing the function for matching subterms as
needed. When a pattern match fails, it throws an exception to reset all bound
pattern variables.

The generic analysis code for pattern matching captures the essence of pat-
tern matching in Stratego and closely follows Stratego’s concrete semantics. In
fact, the generic code can be instantiated to retrieve a fully functional concrete
interpreter for Stratego. This makes the generic interpreter relatively easy to
develop: no analysis-specific code is required. All analysis-specific code resides
in instances of interfaces like ArrowExcept and IsTerm. Sturdy further exploits
this to support compositional soundness proofs of analyses [13].

2.2 A Singleton Term Abstraction

We can derive complete Stratego analyses from the generic interpreter by instan-
tiation. Specifically, we need to provide implementations for the type classes it
is parameterized over. For standard interfaces like ArrowExcept and ArrowEnv,
we provide reusable abstract semantics. However, the term abstraction IsTerm

is language-specific and analysis-specific. Thus, this interface needs to be imple-
mented by the analysis developer.

To illustrate the definition of term abstractions, here we develop a singleton
analysis for Stratego. The analysis determines if (part of) a program transfor-
mation yields a constant output, such that the transformation can be optimized
by constant propagation. Note that in this paper we are only concerned with the
definition of analyses; the implementation of subsequent optimizations is outside
the scope of the paper.

Each term abstraction needs to choose a term representation. For the single-
ton analysis, we use a simple data type T̂erm with two constructors:

data T̂erm = Single Term | Any

https://www.haskell.org/arrows
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instance (ArrowExcept () c, ArrowJoin c, ...) ⇒ IsTerm T̂erm c where

matchString = proc (s,t) → case t of

Single ct → liftConcrete matchString � (s,ct)

Any → (returnA � t) t (throw � ())

matchNum = proc (i,t) → case t of

Single ct → liftConcrete matchNum � (i,ct)

Any → (returnA � t) t (throw � ())

matchCons matchSub = proc (c,ps,t) → case t of

Single (Cons d ts) | c == d && eqLen ps ts → do

ts’ ← matchSub � (ps ,map Single ts)

case allSingle ts’ of

Nothing → returnA � Any

Just cts → returnA � Single (Cons c cts)

Single _ → throw � ()

Any → do matchSub � (ps ,replicate (length ps) Any)

(returnA � t) t (throw � ())

Listing 2: Parts of a singleton term abstraction for Stratego.

A term Single ct means that the transformation produces a single concrete
Stratego term ct of type Term. In contrast, Any means that the transformation
cannot be shown to produce a single concrete term.

Based on such term representation, a term abstraction for Stratego must
implement the 10 functions from the IsTerm interface. We show the implemen-
tation of four of these functions in Listing 2 that also appeared in Listing 1.

Function matchString in Listing 2 defines a computation that takes a string
value s and a matchee t of type Term as input. If t denotes a single concrete
term, matchString delegates to the concrete string matching semantics using
liftConcrete. However, if the matchee is Any, we cannot statically determine
if the pattern match should succeed or fail. Thus, we join t the two potential
outcomes: Either pattern matching succeeds and we return t unchanged, or
pattern matching fails and we abort the matching by throwing an exception.
Function matchNum is analogous to matchString.

Function matchCons distinguishes three cases. The first case checks if matchee
t denotes a single concrete term with constructor c and right number of sub-
terms. If so, we recursively match the subpatterns against the subterms, con-
verted to singletons. Then, if all submatches yielded singleton terms again, we
refine the matchee accordingly. The second case occurs when t denotes a single-
ton term but does not match the constructor pattern. In this case, we simply
abort. Finally, if t is Any, we combine the two cases using a list of Any terms as
subterms. Note that the recursive match on the subpatterns ps is necessary to
bind pattern variables that may occur.



Systematic Approach to Abstract Interpretation of Program Transformations 7

2.3 Soundness

Our approach drastically simplifies the soundness proof of the abstract inter-
preter. In particular, by factoring the concrete and abstract interpreter into a
generic interpreter, we do not have to worry about soundness of the generic in-
terpreter. Instead, its soundness proof follows by composing the proof of smaller
soundness lemmas about its instances [13]. Furthermore, because we instanti-
ate the generic interpreter with sound analysis components for environments,
stores and exceptions, we do not have to worry about soundness of these anal-
ysis concerns either [12]. All that is left to prove, is the soundness of the term
operations.

2.4 Summary

Our approach to developing static analyses for program transformations con-
sists of two steps. First, develop a generic interpreter based on standard se-
mantic components and a parametric term abstraction. Second, define a term
abstraction and instantiate the generic interpreter. While the term abstraction
is language-specific and analysis-specific, the generic interpreter can be reused
across analyses and only needs to be implemented once per transformation lan-
guage. In the subsequent section, we explain how to develop and instantiate
generic interpreters for transformation languages using standard semantic com-
ponents. Sections 4 and 5.1 demonstrate the development of sophisticated term
abstractions.

3 Generic Interpreters for Program Transformations

Creating sound static analyses is a laborious and error-prone process. While
there is a rich body of literature on analyzing functional and imperative pro-
gramming languages, static analysis of program transformation languages is
under-explored. Most work in the area of program transformations so far fo-
cused on type checking, which considers each rewriting separately and is limited
to intra-procedural analysis.

The key enabler of our approach are generic interpreters that can be in-
stantiated with different term abstractions to obtain different analyses. In this
section, we demonstrate our approach at the example of Stratego and show how
to develop generic interpreters for Stratego. In particular, we show that the
features of program transformation languages do not require specific analysis
code but can be mapped to existing language concepts whose analysis is already
well-understood.

3.1 The Program Transformation Language Stratego

Stratego is a program transformation language featuring rich pattern matching,
backtracking, and generic traversals [24]. For example, consider the following
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desugar-type: PairType(t1,t2) → JPair<~t1 ,~t2>K
desugar-expr: PairExpr(e1,e2) → Jnew Pair<>(~e1 ,~e2)K

topdown(s) = s; all(topdown(s)) try(s) = s <+ id

main = topdown(try(desugar-type + desugar-expr))

Listing 3: A generic traversal for desugaring pair notation.

desugaring of Java extended with pairs [9] in Listing 3. The two rewrite rules of
the form above use pattern matching to select pair types and expressions, respec-
tively. They then generate representations of pair types and expressions using
the Pair class. The main rewriting strategy traverses the input AST top-down
and tries to apply both rewrite rules at every node, leaving a node unchanged
if neither rule applies. We also added the definitions of the higher-order func-
tions topdown and try from the standard library. The built-in primitive all

takes a transformation and applies it to each direct subterm of the current term.
Function topdown uses all to realize a generic top-down traversal over a term,
applying s to every node. Function try uses left-biased choice <+ to catch any
failure in s and to resume with the identity function id instead. Furthermore,
the Stratego compiler translates the rewrite rules of the form r : p → t to
transformations r = ?p; !t:

desugar-type = ?PairType(t1,t2); !ClassType ("Pair",[t1,t2])

desugar-expr = ?PairExpr(e1,e2); !NewInstance ("Pair",[e1,e2])

The translated rule first matches the pattern p, binding all pattern variables to
the respective subterms and then builds the term t using the abstract syntax of
Java.

3.2 A Generic Interpreter for Stratego

We demonstrate how to map these language features to standard language con-
cepts and how this enables static analysis of program transformations. To this
end, we developed a generic interpreter for Stratego.2 The generic interpreter is
based on a previous Sturdy case study [13] that was never described in detail.

We consider fully desugared Stratego code in our interpreter, ignoring Strat-
ego’s dynamic rules. This core Stratego language [23] only contains 12 constructs
as defined by the data type Strat in Listing 4. We explain these constructs to-
gether with their generic semantics, shown in the same listing. The semantics
is defined by a function eval that accepts a Stratego program and yields a
computation of type (c term term), meaning that a Stratego program takes a
term as input and yields another term as output. That is, Stratego programs are
term transformations as expected. The arrow c captures the side-effects of the
computation, as explained in Section 2.1.

2 https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/

GenericInterpreter.hs

https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.hs
https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.hs
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data Strat = Match Pat | Build Pat | Id | Seq Strat Strat

| Fail | GuardedChoice Strat Strat Strat | Scope [String] Strat

| Call String [Strat] [String] | Let [(String ,Strategy)] Strat

| One Strat | Some Strat | All Strat

eval :: (IsTerm term c, ArrowEnv String term c, ArrowExcept () c,

ArrowFix c, ...) ⇒ Strat → c term term

eval = fix $ λev strat → case strat of

Match pat → proc t → match � (pat ,t)

Build pat → proc _ → build � pat

Id → proc x → returnA � x

Seq s1 s2 → proc t1 →
do t2 ← ev s1 � t1; t3 ← ev s2 � t2; returnA � t3

Fail → proc _ → throw � ()

GuardedChoice s1 s2 s3 → try (ev s1) (ev s2) (ev s3)

Scope vars s → scoped vars (ev s)

Call f ss ts → proc t → do

senv ← readStratEnv � ()

case Map.lookup f senv of

Just (Closure s@(Strat _ ps _) senv ’) → do

args ← mapA lookupOrFail � ts

scoped ps (invoke ev) �� (s, senv ’, ss , args , t)

Nothing → failString � "Cannot find strat"

Let bnds body → let_ bnds body eval ’

One s → mapSubterms (one (ev s))

Some s → mapSubterms (some (ev s))

All s → mapSubterms (all (ev s))

scoped vars f = proc t → do

oldEnv ← getEnv � ()

deleteEnvVars � vars

finally (proc (t,_) → f � t)

(proc (_,oldE) → restoreEnvVars vars � oldE)

� (t, oldEnv)

Listing 4: Generic interpreter for Stratego.

The first two core Stratego constructs deconstruct and construct terms. A
(Match pat) transformation is based on a term pattern pat, which it matches
against the input term t. Function match from Listing 1 implements the actual
pattern matching, as we have discussed in Section 2. Recall that match binds
pattern variables in the environment as a side-effect and throws an exception if
the pattern match fails. We will see shortly how these side-effects are supported
by the generic interpreter. A (Build pat) transformation is the dual of match:
it constructs a new term according to the pattern, filling in information from
the environment in place of pattern variables.

The next four core Stratego constructs handle control-flow. The identity
transformation Id returns the input term unchanged. A sequence (Seq s1 s2)
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of transformations s1 and s2 pipes the output of s1 into s2. The Fail trans-
formation never succeeds and always throws an exception using throw, which
we also used to indicate failed pattern matches. To catch such exceptions, core
Stratego programs can use guarded choice, written (s1 < s2 + s3) in Strat-
ego notation. Guarded choice runs s3 if s1 fails (throws an exception) and s2

otherwise. We implemented guarded choice using the try function. Like throw,
try is declared in the ArrowExcept interface and allows us to catch exceptions
triggered by throw. There are two things to note here:

– The implementation of throw and try are not specific to Stratego and are
provided as sound reusable analysis components [12] by the standard library
of Sturdy. We are effectively mapping Stratego features to these pre-defined
features of Sturdy.

– We can choose how exceptions affect the variables bound during pattern
matching. For Stratego, we need exceptions to undo variable bindings in
order to correctly implement backtracking. However, in other languages we
may want to retain the state of a computation even after an exception was
thrown.

The next three constructs handle scoping, strategy calls, and local strategy
definitions. We discuss the first two of these in some detail. Stratego’s scoping is
somewhat unconventional, because Stratego has explicit scope declarations and
environments follow store-passing style. Variables listed in a scope declaration
are lexically scoped as usual, but other variables can occur in the environment
and must be preserved. We use function scoped (at the bottom of Listing 4) to
implement this scoping. First, we unbind the scoped variables from the current
environment to allow pattern matching to bind them afresh. Second, after the
scoped code finishes, we restore the bindings of scoped variables from the old
environment while retaining other bindings from the current environment un-
changed. Scoping also occurs when calling a strategy. To evaluate a call, we first
find the strategy definition, then lookup the term arguments ts in the current
environment, and then invoke the strategy using scoped for the term parameters
ps.

The final three constructs are generic traversals that use mapSubterms to
call one, some, or all on the subterms of the current input term. Function
mapSubterms is part of the IsTerm interface and thus analysis-specific because
depends on the term representation. Functions one, some, or all are part of the
generic interpreter and ensure that, respectively, exactly one, at least one, or all
of subterms are transformed by the given strategy s. This way our generic in-
terpreter separates term-specific operations from operations that can be defined
generically.

3.3 The Term Abstraction

At this point, all that it takes to define a Stratego analysis is to implement the
IsTerm interface for a new term abstraction. The rest of the analysis is given by
the generic interpreter and reusable functionality from the Sturdy library.
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class Arrow c ⇒ IsTerm term c where

matchString :: c (String ,term) term

matchNum :: c (Int ,term) term

matchCons :: c ([p],[term]) [term] →
c (String ,[p],term) term

matchExplode :: c term term → c term term → c term term

buildString :: c String term

buildNum :: c Int term

buildCons :: c (String ,[term]) term

buildExplode :: c (term ,term) term

equal :: c (term ,term) term

mapSubterms :: c [term] [term] → c term term

Listing 5: An interface for operations on terms.

The generic interpreter described in the previous section crucially relies on the
term abstraction. In particular, pattern matching, term construction, and generic
traversals must inspect or manipulate terms. In Section 2 we have seen how match

used term operations and how we could implement these for the singleton term
abstraction. Here we show the complete interface for term abstractions.

Stratego terms are strings, numbers, or constructor terms:

data Term = Cons String [Term] | StringLit String | NumLit Int

Our interface must at least provide operations to match and construct such
terms. In addition, we must support Stratego’s generic traversals and explode
patterns. Note that Stratego represents lists using constructors Cons and Nil:

Cons "Cons" [NumLit 1, Cons "Cons" [NumLit 2, Cons "Nil" []]]

We designed an interface for term abstractions of Stratego terms that re-
quires only 10 operations. Listing 5 shows the corresponding type class. The
interface contains four functions for pattern matching, four functions for term
construction, one equality function, and one function to map subterms.

We have discussed the functions for pattern matching Section 2 already.
Function matchCons takes a function for matching subterms against subpatterns.
Function matchExplode takes functions for matching the constructor name and
the subterms. The functions for term construction are straightforward. While
function buildCons takes a String and a list of terms, function buildExplode

takes two terms. The first of these terms must be a string term, the second one
must represent a list of terms. Finally, we require functions for checking the
equality of two terms and for mapping a function over a term’s subterms. This
last function enables generic traversals as shown in Listing 4.

Our interface for term abstractions can be instantiated in various ways by
defining instances of the type class. We have shown an instance for the singleton
term abstraction in Listing 2 and will describe further term abstractions in
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the upcoming sections. But it is worth noting that the interface can also be
instantiated for concrete Stratego terms:

instance ... ⇒ IsTerm Term c where ...

This concrete term instance allows us to run the generic interpreter as a concrete
Stratego semantics. This is not only great for testing the generic interpreter
against a reference implementation of Stratego, but also crucial for proving the
soundness of term abstractions against the concrete semantics.

To summarize, we implemented the Stratego language semantics as a generic
interpreter based on a few term operations only. The generic interpreter maps
many aspects of Stratego language to standard language concepts such as en-
vironments and exceptions. For these language concepts, we reuse the abstract
semantics found in the Sturdy standard library. In the end, to design and im-
plement a new analysis for Stratego, all it takes is a new term abstraction. We
exploit this reduction of effort in the next two sections, where we develop two
novel static analyses for Stratego by defining term abstractions.

4 Sort Analysis

In this section, we define an inter-procedural sort analysis for Stratego. The
analysis checks if a program transformation generates well-formed programs and
to which sort the program belongs. That is, we implement a term abstraction
where we choose to represent terms through their sort.

4.1 Sorts and Sort Contexts

We describe the sorts of Stratego terms by the following Haskell datatype:

data Sort = Lexical | Numerical | Sort String | List Sort

| Tuple [Sort] | Option Sort | Bottom | Top

Sort Lexical represents string values, Numerical represents numeric values.
We use (Sort s) to represent named sorts such as (Sort "Exp"). We further
include sorts for representing Stratego’s lists, tuples, and option terms. Finally,
Bottom represents the empty set of terms and Top represents all terms (also
ill-formed ones). This means, we can guarantee a term is well-formed if its sort
is not Top.

To associate terms to sorts, we parse the declaration of constructor signa-
tures that are part of any Stratego program. Typically, these declarations are
automatically derived from the grammar of the source and target language.

Num : Int → ArithExp

Add : ArithExp * ArithExp → ArithExp

: ArithExp → PythonExp

Each line declares a constructor, the sorts of its arguments and the generated
sort. We allow overloaded constructor signatures as long as they generate terms
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of the same sort. That is, if c : s1 . . . sm → s ∈ Γ and c : s′1 . . . s
′
n → s′ ∈ Γ , then

s = s′.

The third signature declares that any term of sort ArithExp should also be
considered a term of sort PythonExp. This is the result of injection production in
the grammar and effectively declares a subtype relation ArithExp <: PythonExp.
Dealing with subtyping correctly is one of the major challenges of developing a
sort analysis. Thanks to our separation of concerns, we can fully focus on that
challenge here.

We collect all constructor signatures and the subtyping relation in a sort
context:

type Sig = ([Sort], Sort)

data Context = Context { sorts :: Map Sort [(String ,Sig)],

subtypes :: SubtypeRelation }

Since we require the context when operating on sorts, we actually represent
terms abstractly as a pair (Sort,Context). However, all terms refer to the
same context and the context never changes. To simplify the presentation in
this paper, we assume the context is globally known and terms are represented
by Sort alone.

4.2 Abstract Term Operations

In the remainder of this section, we explain how to implement the term ab-
straction for our sort analysis. To this end, we have to provide an instance of
type class IsTerm as shown in Listing 6. We only show the code for lists and
user-defined constructor and omit the other cases for tuples and optionals for
brevity.

As a warm-up, consider operation buildString that yields sort Lexical

independent of the string literal. When matching a string against sort s in
matchString, the match can only succeed if Lexical terms may be part of
s terms. Otherwise the match must fail.

Arguably the most interesting part of the term abstraction is building and
matching constructor terms. Let’s start with operation buildCons, which obtains
the constructor name c and the list of subsorts ss. In Stratego, list, tuple, and
optional terms use reserved constructor names. We include one case for each
reserved constructor to generate the appropriate sort. For example, constructor
Nil can be applied to an empty argument list to generate an empty list. This
list has sort (List Bottom). Constructor Cons generates a compound term that
has sort list if the second argument was a list. The sort of the resulting list is
the least super-sort (t) of the new head list and the tail. The empty constructor
"" generates tuples; None and Some generate optional terms.

The last case of buildCons handles user-defined constructor symbols c. We
use (constrSigs c) to look up the signatures (ss’,t) of c from the sort con-
text. We only retain those signatures that can accept the constructor arguments
ss. Finally, we collect all result sorts t and compute their greatest lower bound.
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instance (ArrowExcept () c, ArrowJoin c, ...)⇒IsTerm Sort c where

buildString = proc _ → returnA � Lexical

matchString = proc (_,s) → if subtype Lexical s

then (returnA � s) t (throw � ()) else throw � ()

buildCons = proc (c, ss) → returnA � case (c, ss) of

("Nil" ,[]) → List Bottom

("Cons",[a,s]) | subtype (List Bottom) s → List a t s

_ →
d

(Top : [t | (ss ’,t) ← constrSigs c, ss v ss ’])

matchCons matchSubs = proc (c,ps ,s)→ case (c,ps)

("Nil" ,[]) → if subtype (List Bottom) s

then (buildCons�("Nil" ,[])) t (throw�()) else throw�()
("Cons",[hd ,tl]) → if subtype (List Bottom) s

then do let subterms = [getListElem s, s]

ss ← matchSubs � ([hd ,tl],subterms)

(buildCons � ("Cons",ss)) t (throw � ())

else throw � ()

_ →
⊔

(proc (c’,ss) → if c == c’ && length ss == length ps

then do ss’ ← matchSubs � (ps ,ss); cons � (c,ss ’)

else throw � ()) �� constructorsOfSort s

mapSubterms f = proc s → do
⊔

(proc (c,ts) →
do ts ’ ← f � ts buildCons � (c,ts ’))

� constructorsOfSort s

Listing 6: Abstract term operations for the sort analysis.

If none of the signatures matches, we return sort Top. For example, consider the
call:

buildCons � ("While" ,[Sort "Exp",Sort "Block"])

If the signature of While is (Exp * Block → Stmt), we obtain Sort "Stmt’’

as result. If the signature is instead declared as (Exp * Exp → Stmt), we obtain
Top because the constructed term is ill-formed (unless Block is a sub-sort of Exp).

Operation matchCons is quite complex, although all cases for reserved con-
structors follow the same pattern:

1. We check if the sort of the current term s is compatible with the matched
constructor. For example, a match against Nil can only succeed if the sort
is a list.

2. We retrieve the subterm sorts if any. For example, for Cons we have two
subterms: the head element and the tail list. Auxiliary function getListElem

carefully finds all possible list elements, taking subtyping into account.
3. We match the subterms against the subpatterns, yielding refined subterms

ss.
4. We refine the current term by calling buildCons on the refined subterms

and the matched constructor. Since matching may always fail, we join the
result with a call to throw.
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The last case of matchCons again handles user-defined constructor symbols
c. We use constructorsOfsort s to obtain all constructors c’ and their argu-
ment types ss. If the constructor has the required name and the right number
of arguments, then the corresponding match might succeed. We match the sub-
terms and refine the current term as in the other cases, but the we compute
the least upper bound over all possible results. For example, when we match a
constructor Add against sort Exp, we would lookup all constructors that gener-
ate sort Exp. For (Add : Exp * Exp → Exp) the match can succeed, but for
(Var : Lexical → Exp) the match must fail. The join operator merges the
results to compute a sound approximation.

Lastly, we show the code of mapSubterms, which needs to retrieve the current
subterms as a list and pass them to f. However, sorts do not directly point out
their subterms. Again we use constructorsOfsort s to retrieve the sorts of
subterms indirectly by finding all constructors of the current sort and taking
their parameter lists. For example, if we call mapSubterms with sort "Exp", then
computation f will be called on [Sort "Exp", Sort "Exp"] for constructor
Add and on [Lexical] for constructor Var.

To summarize, in this section we defined a sort analysis for Stratego, simply
by designing a sort term abstraction which implements the IsTerm interface.
The rest of the analysis we get for free from the generic interpreter and reusable
analysis code. As the reader probably noticed, the term abstraction for sorts
is fairly complex in its own right. Being able to focus on the term abstraction
without considering other analysis aspects was crucial.

4.3 Sort Analysis and Generic Traversals

In this subsection, we showcase the inter-procedurality of our sort analysis by
analyzing generic traversals. A generic traversal traverses a syntax tree indepen-
dent of its shape and transforms the visited nodes. Statically assigning types to
a generic traversal is notoriously difficult, because the type needs to summarize
all changes the traversal does to the entire tree. In this subsection, we will illus-
trate how our inter-procedural sort analysis can support some generic traversals,
before refining our analysis further in the subsequent section.

Consider the trace of the sort analysis (Figure 1) of the pair desugaring from
Section 3.1. The trace starts in the main function with an input term of sort Expr.
The main function calls topdown, which calls try(D), which calls the desugaring
rules desugar-type + desugar-expr. The rule desugar-expr either yields a
term of sort Expr or fails because the pattern PairExpr(...) matches some but
not all terms of sort Expr. Furthermore, the rule desugar-type definitely fails
because no terms of sort Expr match the pattern PairType(...). Even though
one of the rules failed, the call try(D) produces a successful result by applying
the input term to the identity transformation. The function topdown then passes
the resulting term of sort Expr to the generic traversal all(...). Since we know
the sort of the current term, we enumerate all relevant constructors and the sorts
of their direct subterms and recursively analyze the desugaring for them. In the
example trace of Figure 1, we consider three subterm sorts of Expr. The second
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desugar-type: PairType(t1 ,t2) → JPair<~t1 ,~t2>K
desugar-expr: PairExpr(e1 ,e2) → Jnew Pair<>(~e1 ,~e2)K

topdown(s) = s; all(topdown(s)) try(s) = s <+ id

main = topdown(try(desugar-type + desugar-expr))

main

topdown(try(D))

try(D)

desugar-expr desugar-type id

all(topdown(try(D))) topdown(try(D))

topdown(try(D))

topdown(try(D))

Input

Output

Expr Expr

Expr Expr

Expr Expr or fail

Expr

Expr

Expr

Expr

Literal

Literal

Ident

Ident

Expr fail Expr Expr

Fig. 1: A simplified trace of the sort analysis of the pair desugaring, where we
abbreviate desugar-type + desugar-expr with D.

and third recursive call to topdown(try(D)) resolve easily, whereas the first
recursive call would end up in a cycle (shaded nodes in Figure 1). To this end,
we use a fixpoint algorithm with widening to ensure that the analysis terminates.

The example shows why it is hard to analyze the type of a generic traversal:
For different input sorts, a generic traversal might produce different output sorts.
Therefore, our sort analysis reanalyzes a generic traversal for each input sort,
instead of assigning a fixed type like a type checker would do.

The example we considered here is a special case of generic traversals, known
as type-preserving. A generic traversal is type-preserving if the sort of the input
and output term are the same at every node. However, some generic traversals
change the sort of the input term. The sort analysis of this section is not capable
of analyzing such type-changing generic traversals. To this end, we require a
more precise analysis, which we develop in the following section.

5 Locally Ill-Sorted Sort Analysis

Many program transformations, like a compiler, translate terms from one sort to
terms of another sort. When these program transformations use generic traver-
sals, they produce mixed intermediate terms, which contain subterms of the
input sort and subterms of the output sort. Because mixed intermediate terms
are not well-sorted, these program transformations are challenging to type check.

For example, consider the traversal in Figure 2 that translates Boolean ex-
pressions into numeric expressions in a bottom-up fashion. The boolean expres-
sion And(True(),False()) is transformed in two steps:

And(True(),False())  
:::::::
And(1,0)  Min(1,0)
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encode: True → 1

encode: False → 0

encode: And(e1,e2) → Min(e1 ,e2)

encode: Or(e1,e2) → Max(e1 ,e2)

bottomup(s) = all(bottomup(s)); s

main = bottomup(encode)

: Int → NExp

Max : NExp * NExp → NExp

Min : NExp * NExp → NExp

: Bool → BExp

And : BExp * BExp → BExp

Or : BExp * BExp → BExp

main

bottomup(E)

E

all(bottomup(try(E)))

bottomup(E)

BExp NExp

{true, false,

And(NExp,NExp),

Or(NExp,NExp)}

{1, 2,

Min(NExp,NExp),

Min(NExp,NExp)}

BExp

{true, false,

And(NExp,NExp),

Or(NExp,NExp)}

BExp NExp

Input
Output

Fig. 2: The top of the figure contains a type-changing generic traversal that
translates boolean to numeric expressions. The bottom contains the analysis
trace of the transformation, where we abbreviate encode with E.

Even though the input term And(True(),False()) is a valid boolean expression
and the output term Min(1,0) a valid numeric expression, the transformation
creates an intermediate term

::::::::
And(1,0), which is ill-sorted. The sort analysis of

the previous section is only able to check transformations which produce well-
sorted terms and therefore cannot handle this example. To analyze this example,
we need a more precise sort analysis that can represent ill-sorted terms, which
we develop in the remainder of this section

5.1 Term Abstraction for Ill-Sorted Terms

The key idea is to use a term abstraction which can represent terms with well-
sorted leafs and an possible ill-sorted prefix, such as And(NumExp,NumExp). This
abstract term represents all terms with "And" as top-level constructor and two
numeric expressions as subterms. We implement this term abstraction with the
following Haskell type:

data Term = Sorted Sort | MaybeSorted (Set (String ,[Term]))

The case Sorted s represents well-sorted terms that belong to sort s, and the
case MaybeSorted represents terms with an possibly ill-sorted prefix. For exam-
ple, this datatype allows us to represent the ill-sorted term And(1,0) with the
abstract term

MaybeSorted [("And" ,[Sorted "NExp",Sorted "NExp"])].

5.2 Abstract Term Operations

We develop an analysis for Stratego by implementing the term operations with
the term abstraction from above. We only discuss the matchCons and buildCons
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matchCons matchSub = proc (c,ps,t) → case t of

MaybeSorted cs → matchCons ’ �(c,ps,cs)
Sorted s → Sort.matchCons matchSub�(c,ps ,lookupSort ’ ctx s)

where

matchCons ’ = proc (c,ps,cs) →
⊔

(proc (c’,ss) →
if c == c’ && length ss == length ps

then do ss’ ← mapSub � (ps ,ss); cons � (c,ss ’)

else throw � ()) �� cs

buildCons = proc (c,ts) → returnA � MaybeSorted [(c,ts)]

widening :: Context → Int → Term → Term → Term

widening ctx k cs1 cs2

| k == 0 = Sorted (typecheck ctx (cs1 t cs2))

| otherwise =
MaybeSorted (zipSubterms (termWidening ctx (k-1)) cs1

cs2)

where typecheck :: Context → Term → Sort

Listing 7: Abstract term operations for the locally ill-sorted sort analysis.

operations (Listing 7), because the remaining functions are similar to the oper-
ations of the sort analysis.

The matchCons operation first matches on the term representation and in
both cases calls the matchCons’ helper function, which compares the construc-
tors, arity and subterms. The lookupSort’ function, similar to Listing 6, looks
up all constructor signature for a sort, but additionally converts the signatures
to abstract terms. This matchCons operation is more than the matchCons of
the sort analysis, because we may know the top-level constructor of the term.
This improved precision results in more pattern matches which unconditionally
succeed or fail.

In contrast to the sort analysis, the buildCons operation in Listing 7 does
not check if the constructor and its subterms belong to a valid sort. Instead, it
constructs a new abstract term, which may or may not be well-sorted. The type
checking of this term is then delayed until a later point.

With these definitions, the analysis would be able to check some type-changing
generic traversals, however, it might not terminate because the abstract terms
might grow arbitrarily large. To avoid this problem, we reduce the size of abstract
terms by type checking their subterms. For example, we can type check the imme-
diate subterms of Or(And(1,0),1) to obtain the abstract term Or(>,NumExp).
In the new term, the sort > indicates the type checking of And(1,0) failed and
the term is ill-sorted. We use this technique in a widening operator [7] that
ensures that the analysis terminates. The operator simply type checks all sub-
terms deeper than a certain limit k, such that the resulting terms are not deeper
than k.
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5.3 Analyzing Type-Changing Generic Traversals

In the remainder of this section, we discuss how the analysis of this section checks
type-changing generic traversals. To this end, we discuss an analysis trace of the
example at the beginning of this of this section (Figure 2).

The trace in Figure 2 shows only the final fixpoint iteration (earlier iterations
produce subsets of the sets shown in the trace). It starts with the analysis of
the main function with the boolean expression sort BExp, which is then passed
to bottomup(E). In contrast to the top-down traversal, the bottom-up traversal
first traverses with all(bottomup(E)) over the subterms of boolean expressions
and replaces them by numeric expressions, e.g., And(NExp,NExp). The resulting
set of ill-sorted terms is then passed to the rewrite rule E. The rule E then replaces
each top-level boolean constructor with a numeric constructor without touching
the subterms. All terms in the resulting set are now well-typed and bottomup(E)

applies the widening operator to reduce this set to NExp.
In summary, we defined an advanced sort analysis, which can represent ill-

sorted terms. This analysis is able to check type-changing generic traversals,
which produces ill-sorted intermediate terms.

6 Related Work

Transformation languages like Stratego [10] and PLT Redex [17] have a dy-
namic type checker for syntactic well-formedness. While dynamic type checking
supports generic traversals, it does not help developers of transformations to un-
derstand the code. In contrast, we developed a static analysis such that program
transformations can be checked before running them.

Other program transformation languages like Ott [22], Maude [5], Tom [2]
and Rascal [14] use static type checking to ensure syntactic well-formedness.
However, these languages do not support or struggle to statically check arbi-
trary generic traversals. Ott is a language for specifying rewrite systems and
exporting them to proof assistants such as Coq or Isabelle. However, it does
not support generic traversals. Maude is a language for specifying rewrite sys-
tems in membership equational logic. However, it implements generic traversals
with reflection and hence cannot statically check their type. Tom and Rascal
are statically typed transformation languages with support for type-preserving
generic traversals. However, they do not support type-changing generic traver-
sals. We explained in Section 5 why conventional static type checkers cannot
analyze type-changing generic traversals: these traversals produce intermediate
terms which are ill-sorted. In this work, we aim to analyze type-preserving as
well as type-changing generic traversals. We solve this problem by defining a
static analysis which can represent terms with a finite ill-sorted prefix. In con-
trast to a conventional type checking, this term abstraction is more precise than
regular types, but requires computing a fixed point.

Lämmel distinguishes “type-preserving” from “type-unifying” generic traver-
sals [15], as realized in Scrap-Your-Boilerplate [19]. A unifying generic traversal



20 S. Keidel et al.

is a fold over the term that yields a value of the same “unified” type at each
node. These kinds of generic traversals are easier to type statically, however,
not all generic traversals fit in one of these two typing schemes. For example,
a generic traversal that translates code from one language to another is neither
type-preserving nor type-unifying. Rather than developing additional specialized
traversal styles, our paper aims to support static analysis for arbitrary generic
traversals.

Most closely related to our work, Al-Sibahi et al. present an abstract in-
terpreter of a subset of Rascal, including generic traversals [1]. Al-Sibahi et al.
use inductive refinement types as abstract domain. The main difference of our
work is that we separated analysis-independent concerns (the generic interpreter)
from analysis-specific concerns (the instances). This way we can develop different
analyses for program transformations with relatively little effort. Furthermore, it
also simplifies the analysis definition, because most of the language complexity
is captured in the generic interpreter. Lastly, our work is based on the well-
founded theory of compositional soundness proofs [13] provided by the Sturdy
framework. This allows us to verify that soundness of analyses more easily, as
we only need to prove that the instances are sound.

CompCert [16] is a formally verified C compiler. The compiler guarantees that
the compiled program has the same semantics as the input program. To this end,
each program transformation in the compiler passes has to preserve the semantics
of the transformed program. While CompCert focuses on the semantics of the
transformed program, the static analyses for program transformations in this
work have to satisfy a different correctness property. Soundness of these static
analyses guarantees that the analyses results overapproximate which programs
can be generated by a program transformation. However, soundness does not give
any guarantees about the semantics of the transformed program. In the future,
we aim to develop more precise analyses for program transformation languages
that allow us to draw conclusion about the semantics of transformed programs.

7 Conclusion

To summarize, in this work, we presented a systematic approach to designing
static analyses for program transformations. Key of our approach is to capture
the core semantics of the program transformations with a generic interpreter
that does not refer to any analysis-specific details. This lets the analysis devel-
oper focus on designing a good abstraction for programs. We demonstrated the
usefulness of our approach by designing three analyses for the program transfor-
mation language Stratego. Our sort analyses are able to check the well-sortedness
of type-preserving and even type-changing generic traversals.
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9. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Sugarj: library-based syn-
tactic language extensibility. In: Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27,
2011. pp. 391–406 (2011)

10. Erdweg, S., Vergu, V., Mezini, M., Visser, E.: Modular specification and dynamic
enforcement of syntactic language constraints. In: Proceedings of International
Conference on Modularity (AOSD). pp. 241–252. ACM (2014)

11. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111
(2000)

12. Keidel, S., Erdweg, S.: Compositional soundness proofs of abstract interpreters.
PACMPL 3(OOPSLA) (Oct 2019)

13. Keidel, S., Poulsen, C.B., Erdweg, S.: Compositional soundness proofs of abstract
interpreters. PACMPL 2(ICFP), 72:1–72:26 (Jul 2018)

14. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language
for source code analysis and manipulation. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, Edmonton,
Alberta, Canada, September 20-21, 2009. pp. 168–177 (2009)



22 S. Keidel et al.
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