
Submitted to:
ICLP 2020 Sister Track

c© T. Szabó, G. Bergmann, S. Erdweg, and M. Voelter
This work is licensed under the
Creative Commons Attribution License.

Report: Datalog with Recursive Aggregation
for Incremental Program Analyses

Tamás Szabó
itemis AG / JGU Mainz

Germany

Gábor Bergmann∗

Budapest University of Technology and Economics

MTA-BME Lendület Research Group on Cyber-Physical Systems
Hungary

Sebastian Erdweg
JGU Mainz
Germany

Markus Voelter
independent / itemis AG

Germany

This abstract is a summary of our OOPSLA’18 paper “Incrementalizing Lattice-Based Program Analyses
in Datalog” [6]. Original download URL: https://dl.acm.org/doi/10.1145/3276509.

Extended Abstract

A static analysis is a tool that reasons about the runtime behavior of a computer program without actually
running it. This way static analyses can help to catch runtime errors already at development time before
the code goes to production, thereby saving significant costs on maintenance and the mitigation of poten-
tial software failures. To this end, static analyses are widely used in many areas of software development.
For example, Integrated Development Environments (IDEs) use type checkers or data-flow analyses to
provide continuous feedback to developers as they modify their code.

Datalog is a logic programming language that sees a resurgence in the static analysis community.
There are many examples of static analyses specified in Datalog; ranging from network analysis on
Amazon-scale systems [1] to inter-procedural points-to analysis of large Java projects [5]. The benefit of
using Datalog for static analyses is that the declarative nature of the language allows quick prototyping of
modular and succinct analysis implementations. Moreover, the execution details of a Datalog program is
left to a solver, and solvers are free to optimize the execution in many ways. Our goal is to incrementalize
the Datalog solver, in order to provide continuous feedback with analyses in IDEs.

In response to a program change, an incremental analysis reuses the previously computed results and
updates them based on the changed code parts. In many applications, incrementality has been shown to
bring significant performance improvements over from-scratch re-computation. There also exist incre-
mental Datalog solvers, but they are limited in expressive power: They only support standard Datalog
with powersets, and there is no support for recursive aggregation over custom lattices. This is a problem
because static analyses routinely use custom lattices and aggregation (under monotonic aggregation se-
mantics [4]), e.g. when analyzing a subject program with a loop and computing a fixpoint over a lattice
using the least upper bound operator. Incrementalizing such computations is challenging, as aggregate
results may recursively depend on themselves. It is true that certain finite lattices are expressible with
powersets, so incrementalization techniques for standard Datalog may seemingly apply, but Madsen et al.
explain that such encodings often incur prohibitive computational cost, while infinite lattices cannot even
be expressed with powersets [3].

∗The second author was partially supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sci-
ences and by the ÚNKP-19-4 New National Excellence Program of the Ministry For Innovation and Technology.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://dl.acm.org/doi/10.1145/3276509


2 Report: Datalog with Recursive Aggregation for Incremental Program Analyses

In this paper, we present an incremental analysis framework called IncA that supports recursive ag-
gregation over custom lattices. IncA uses Datalog extended with lattices for analysis specification. IncA
shields analysis developers from the details of efficient execution, as it automatically incrementalizes
program analyses in the face of program changes. We develop a novel incremental solver called DRedL.
DRedL extends the well-known DRed algorithm [2] to support the standard semantics introduced by Ross
and Sagiv for recursive monotonic aggregation [4]. Our key idea is that instead of decomposing a pro-
gram change into deleted and inserted tuples, DRedL works with antimonotonic and monotonic changes
according to the partial order of the chosen lattice. We have formally proven that DRedL is correct and
yields the exact same result as running a Datalog program from scratch. Although we apply DRedL

to incrementalize program analyses, our contributions are generally applicable to any Datalog program
using recursive aggregation over custom lattices.

We evaluate the applicability and performance of IncA with real-world static analyses. We implement
a lattice-based points-to analysis that reasons about the potential target heap objects of variables, and we
implement a number of static analyses that reason about the potential values of string-typed variables.
We benchmark the analyses on open-source code bases with sizes up to 70 KLoC, and we synthesize
program changes. We find that IncA consistently delivers good performance: After an initial analysis
that takes a few tens of seconds, the incremental updates times are on the millisecond ballpark. The price
of incrementalization is the extra memory use. We find that the memory consumption of IncA can grow
large (up to 5GB), but it is not prohibitive for applications in IDEs.

References
[1] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J. Hu, Temesghen Kahsai,

Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, Sean McLaughlin, Jason Reed, Neha Rungta, John Sizemore,
Mark A. Stalzer, Preethi Srinivasan, Pavle Subotic, Carsten Varming & Blake Whaley (2019): Reachability
Analysis for AWS-Based Networks. In: Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II, pp. 231–241, doi:10.1007/978-3-030-
25543-5 14. Available at https://doi.org/10.1007/978-3-030-25543-5_14.

[2] Ashish Gupta, Inderpal Singh Mumick & V. S. Subrahmanian (1993): Maintaining Views Incrementally. In:
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD ’93,
ACM, New York, NY, USA, pp. 157–166, doi:10.1145/170035.170066. Available at http://doi.acm.org/
10.1145/170035.170066.

[3] Magnus Madsen, Ming-Ho Yee & Ondřej Lhoták (2016): From Datalog to Flix: A Declarative Lan-
guage for Fixed Points on Lattices. In: Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’16, ACM, New York, NY, USA, pp. 194–208,
doi:10.1145/2908080.2908096. Available at http://doi.acm.org/10.1145/2908080.2908096.

[4] Kenneth A. Ross & Yehoshua Sagiv (1992): Monotonic Aggregation in Deductive Databases. In: Proceedings
of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS
’92, ACM, New York, NY, USA, pp. 114–126, doi:10.1145/137097.137852. Available at http://doi.acm.
org/10.1145/137097.137852.

[5] Yannis Smaragdakis & Martin Bravenboer (2011): Using Datalog for Fast and Easy Program Analysis. In:
Proceedings of the First International Conference on Datalog Reloaded, Datalog’10, Springer-Verlag, Berlin,
Heidelberg, pp. 245–251, doi:10.1007/978-3-642-24206-9 14. Available at http://dx.doi.org/10.1007/
978-3-642-24206-9_14.

[6] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg & Markus Voelter (2018): Incrementalizing Lattice-Based
Program Analyses in Datalog. Proc. ACM Program. Lang. 2(OOPSLA), doi:10.1145/3276509. Available at
https://doi.org/10.1145/3276509.

http://dx.doi.org/10.1007/978-3-030-25543-5_14
http://dx.doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1007/978-3-030-25543-5_14
http://dx.doi.org/10.1145/170035.170066
http://doi.acm.org/10.1145/170035.170066
http://doi.acm.org/10.1145/170035.170066
http://dx.doi.org/10.1145/2908080.2908096
http://doi.acm.org/10.1145/2908080.2908096
http://dx.doi.org/10.1145/137097.137852
http://doi.acm.org/10.1145/137097.137852
http://doi.acm.org/10.1145/137097.137852
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://dx.doi.org/10.1145/3276509
https://doi.org/10.1145/3276509

