
Generating Incremental Type Services
André Pacak

JGU Mainz, Germany
Sebastian Erdweg
JGU Mainz, Germany

Abstract
In this vision paper, we propose a method for generating fully
functional incremental type services from declarations of
type rules. Our general strategy is to translate type rules into
Datalog, for which efficient incremental solvers are already
available. However, many aspects of type rules don’t natu-
rally translate to Datalog and need non-trivial translation.
We demonstrate that such translation may be feasible by out-
lining the translation rules needed for a language with typing
contexts (name binding) and bidirectional type rules (local
type inference). We envision that even rich type systems of
DSLs can be incrementalized by translation to Datalog in the
future.

CCSConcepts •Theory of computation→Type struc-
tures; Program analysis.

Keywords incremental, bidirectional type checking
ACM Reference Format:
André Pacak and Sebastian Erdweg. 2019. Generating Incremental
Type Services. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’19), October
20–22, 2019, Athens, Greece. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3357766.3359534

1 Introduction
Static typing helps developers to debug their code, and it
helps IDEs to provide semantic editor services like code
completion. To be effective, type information needs to be
available immediately while developers edits code. However,
DSLs in particular often lack such incremental type services
because the development effort for these services is too high.
Our goal is a technique for generating incremental type

services from declarations of type rules. An incremental type
service must not only react to code changes quickly, but also
allow various type-related queries, for example:

1. Given an expression, find its type.
2. Given an expression and a type, check conformance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’19, October 20–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6981-7/19/10. . . $15.00
https://doi.org/10.1145/3357766.3359534

3. Given a type, find variables in scope of that type.
4. Given a type, find expressions of that type.

Existing generic solutions to incremental type checking [2,
6, 13] suffer two problems. First, they support a limited set of
type features only, e.g. struggling with transitive subtyping.
Second, they only support basic typing queries like (1.) and
(2.) but not queries of editor services like (3.) and (4.).

We propose to generate incremental type services by com-
piling type rules to Datalog. Datalog [4] is a logic program-
ming language that can be used to derive relations from input
facts via logical rules. Efficient incremental solvers already
exist for Datalog, updating the relations when the input facts
change [10, 11]. In our setup, the input facts describe the user
code while the derived relations describe the code’s name
and typing information. We believe our approach can avoid
the problems from above. First, Datalog is a flexible language
in which many computations can be embedded easily, for
example encoding subtyping as the transitive closure over
inheritance. Second, Datalog relations can be queried in any
direction, allowing us to answer all queries introduced above.
But Datalog and its incremental solvers also come with

specific requirements, which prevent a natural translation
of type rules to Datalog. Specifically, Datalog relations must
range over finite domains. However, the typing relation
ranges over typing contexts Ctx and types Type, both of which
are infinite domains in most languages. The domain of Type
is infinite due to structural types like pair, record, struct, and
function types. The domain of Ctx is infinite because it con-
tains Type. Only the names in Ctx and the expressions Exp are
finite because they are restricted to fragments of the current
user code. If we want to compile type rules to Datalog, we
need to find a way to avoid the infinite domains Ctx and Type.

The contributions of this vision paper are:
• We propose the generation of incremental type ser-
vices by compilation of type rules to Datalog.
• We identify the challenges of this approach, namely
we need to avoid the infinite domains Ctx and Type.
• We propose translation steps for type rules that pre-
serve their meaning yet make them compatible to Dat-
alog. We illustrate the translations for a bidirectional
type checker of the simply typed lambda calculus.

2 A Bidirectional Type Checker
We introduce a simple type system to illustrate the challenges
that occur in the translation to Datalog and to showcase
how we solve these challenges. Specifically, Listing 1 shows
a bidirectional type checker for the simply typed lambda
calculus (STLC) with numbers implemented in Haskell. A
bidirectional type checker [7] utilizes two mutually recursive

197

https://doi.org/10.1145/3357766.3359534
https://doi.org/10.1145/3357766.3359534

SLE ’19, October 20–22, 2019, Athens, Greece André Pacak and Sebastian Erdweg

data Term = Var Name | App Term Term |

Lam Name Term | Anno Term Type |

Zero | Succ Term

data Type = Fun Type Type | Nat

data Ctx = Empty | Bind Ctx Name Type

data Typed a = Typed a | Error String

instance Monad Typed where . . .

lookup :: Ctx → Name → Typed Type

lookup Empty x = fail "Unbound␣variable"

lookup (Bind c x t) y | x == y = return t

| otherwise = lookup c y

infer :: Ctx → Term → Typed Type

infer ctx Zero = return Nat

infer ctx (Succ t) = do

check ctx t Nat

return Nat

infer ctx (Var x) = lookup ctx x

infer ctx (Anno t ty) = do

check ctx t ty

return ty

infer ctx (App t1 t2) = do

ty ← infer ctx t1

(ty1 , ty2) ← matchFun ty

check ctx t2 ty1

return ty2

infer _ t = fail "Cannot␣infer"

check :: Ctx → Term → Type → Typed ()

check ctx (Lam x t) ty = do

(ty1 , ty2) ← matchFun ty

check (Bind ctx x ty1) t ty2

check ctx t ty = do

ty' ← infer ctx t

matchType ty ty'

matchFun :: Type → Typed (Type , Type)

matchFun (Fun ty1 ty2) = return (ty1 , ty2)

matchFun _ = fail "Type␣is␣not␣a␣function"

matchType :: Type → Type → Typed ()

matchType expect given | expect==given = return ()

matchType _ _ = fail "Types␣do␣not␣match"

Listing 1. Bidirectional type checker of STLC with numbers.
typing judgments, a check and an infer judgment. While
infer tries to compute the type of a term given a typing
context, check validates a term against a given type. We
chose a bidirectional type checker to show that our approach
can be applied to non-trivial type systems including type
inference.

We describe the bidirectional type checker using a monad
Typed that either yields a value or an error. Functions lookup
and infer yield a Type or an error, function check yields
the unit value () or an error. With this monad, each state-
ment in infer and check corresponds to a premise of the
corresponding type rules. For example, we can infer the
type of applications (App t1 t2) by (i) inferring the type
ty of t1, (ii) matching ty to ensure it is a function type
(Fun ty1 ty2), (iii) checking that t2 has type ty1, and (iv)

yielding the result type ty2. If one of these steps does not
succeed, infer will yield the first error it encounters.

Based on this type checker, we can better explain the chal-
lenges involved in translating to Datalog. Datalog programs
describe relations and incremental Datalog solvers eagerly
enumerate all tuples of these relations. But such enumer-
ation can only terminate if the relation inputs come from
finite domains. However, Type and Ctx define infinite do-
mains and therefore cannot be used as relation inputs. This
precludes a direct translation to Datalog for our functions
lookup, infer, or check. Note that while Term also defines
an infinite domain, in practice we will only consider a par-
ticular instance of Term, namely the current user program.
Infinite domains in function outputs are not problematic
because of their functional dependency [8] on the inputs.
In the next section, we will show how to transform the

type checker into one that avoids infinite domains as function
inputs. But as first step we will instrument the type checker
to find all type errors in a program, not just the first one. This
is useful for providing feedback anyway, but it also yields
better incremental performance because if the user fixes one
type error, the remaining Typed results remain valid.

3 Translation to Datalog
In this section, we will show how we tackle the previously
identified challenges by transforming the type checker.
3.1 Computing All Types and Type Errors
The type checker from Listing 1 stops as soon as it finds
a type error. This can be seen in the single error message
that Error accepts. However, to enable a wide range of type
services, we want to compute all types and type errors of
a program and continue even after the first type error was
found. This is what our first translation step does.
We introduce an auxiliary type Any that we use when-

ever the actual type cannot be computed. The use of Any is
inspired by gradual typing, where the static type checker
also uses such a catch-all type for the parts of the code that
don’t have a static type [3]. In our type checker, we want to
use Any whenever type inference fails. For example, in the
case for function application App, when type inference of
t1 fails, we want to approximate its type as Any so that we
can continue checking t2. We can introduce this behavior
by adopting the monad for Typed to continue after an error
using a catch-all value top (which is Any for Type):
data Type = Fun Type Type | Nat | Any

data Typed a = Typed a | Error [String]

instance RMonad Typed where

type RMonadCtx Typed a = WithTop a

return a = Typed a

t >>= f = case t of

Typed ty → f ty

Error err1 → case f top of

Typed _ → Error err1

Error err2 → Error (err1 ++ err2)

198

Generating Incremental Type Services SLE ’19, October 20–22, 2019, Athens, Greece

We use a restricted monad RMonad that only accepts types
that are instances of type class WithTop. In the bind function
>>=, when t is an error, we call f anyway using the top
value. We make sure to propagate any errors encountered
afterwards.
Down the line, we are using matchFun to deconstruct

function types and matchType to compare types. We have
to adapt these functions to take the new Any type into ac-
count. As in gradual typing, the Any type can be treated as
a function (Fun Any Any). When comparing types, we use
the ordering ≥ to ensure the given type is at least as specific
as the expect type. Type Any is larger than all other types
and, in contrast to subtyping, ≥ is covariant for functions in
the argument and result type.
matchFun :: Type → Typed (Type , Type)

matchFun (Fun ty1 ty2) = return (ty1 , ty2)

matchFun Any = return (Any , Any)

matchFun _ = fail "Type␣is␣not␣a␣function"

matchType :: Type → Type → Typed ()

matchType expect given | expect≥given = return ()

matchType _ _ = fail "Types␣do␣not␣match"

For the App case, when infer ctx t1 fails with errors, we
continue with the Any type for ty. The call to matchFun ty
will then yield Any for both ty1 and ty2. We thus check the
function argument against Any, which will succeed as long
as the argument is typeable at all. If the check yields further
type errors, we propagate those together with the errors of
the infer call.

3.2 Eliminating the Type Argument
Our type checker has two kinds of infinite input domains:
types and contexts. In this translation step, we eliminate the
type input; we deal with contexts in the next subsection.

Function check is the only function that receives a type as
input. The type prescribes the expected type of an expression.
Our idea is to reverse the data flow of type arguments: Instead
of passing a type down, we require the type from above when
we need it. Specifically, we introduce a new function

required :: Ctx → Term → Typed Type

that computes the type that is required of a checked ex-
pression. We rewrite checkold to checknew by calling required
whenever the input type is needed, such that:

checknew c e = checkold c e (required c e)

The difficulty lies in generating required. The idea is that
required reconstructs the type argument of checkold , but on
demand. To this end, required contains one case for each
call site of checkold . We show the derived code of required
in Listing 2 and explain each case below.
The first call of checkold in Listing 1 is in the Succ case

of infer. The code says that sub-expression t of (Succ t)
must have type Nat. This call site becomes a case in required
stating that the required type of t is Nat if the parent of t is

required :: Ctx → Term → Typed Type

required ctx term = case parent term of

Just (Succ t _) | term == t → return Nat

Just (Anno t ty _) | term == t → return ty

Just (App t1 t2 _) | term == t2 → do

ty ← infer ctx t1

(ty1 , _) ← matchFun ty

return ty1

Just (Lam x t p) | term == t → do

let (Bind ctx ' _ _) = ctx

ty ← required ctx ' (Lam x t p)

(_, ty2) ← matchFun ty

return ty2

Listing 2. Computing the required type for check.

(Succ t). The call site of checkold for Anno can be translated
similarly, but yielding the annotated type.
The call site of checkold for (App t1 t2) is more compli-

cated because the type argument is computed. Specifically,
we call infer and matchFun to determine the argument type
of t1, against which we check the argument expression t2.
This call site illustrates the general translation scheme we
use to derive the cases of required:

1. Match the parent term to identify the call site of check
belonging to the current term.

2. Compute the program slice for the type argument of
the call site.

3. Copy the program slice into required.
4. Return the type argument as result of required.

For App, this means we copy the calls of infer and matchFun
into required, yielding the argument type as result.

The case for Lam follows the same scheme, but has to deal
with two specific issues. First, the invocation of check for
Lam was a recursive call. Therefore, when computing the
program slice, we need to replace any reference to check’s
type argument with a recursive call of required on the
parent. The second issue is that the call of check was passed
an extended context. However, we need to interpret the slice
using the original context. To this end, we invert the context
construction by deconstructing it again, yielding ctx'.

Based on required, we obtain checknew code that behaves
the same as checkold yet does not need a type argument:
check :: Ctx → Term → Typed ()

check ctx (Lam x t p) = do

ty ← required ctx (Lam x t p)

(ty1 , ty2) ← matchFun ty

check (Bind ctx name ty1) t

check ctx t = do

ty ← required ctx t

ty' ← infer ctx t

matchType ty ty '

3.3 Eliminating the Context Argument
To run the type checker in Datalog, we finally need to elim-
inate the context argument. We eliminate the context by

199

SLE ’19, October 20–22, 2019, Athens, Greece André Pacak and Sebastian Erdweg

applying a technique that has been known for reference
attribute grammars for a while. The key idea is to define
lookup as a function that searches for a variable’s binding
by walking up the tree [5][9, Chapter V]. Such a lookup func-
tion does not require a typing context as input, which can
thus be eliminated. While the idea is not novel, we are the
first to explore how to generate a bottom-up lookup function
from a traditional type checker.

Traditionally, functions check and infer traverse the tree
top-down while building up a typing context. That typing
context is eventually used to look up the type of variable
references. The bottom-up lookup function does the inverse:
It starts at the variable reference, walks up the tree, and
resolves a variable’s type when reaching the binding. We
show the derived bottom-up lookup function in Listing 3
and explain how it was derived below.

The derived lookup function takes the term, in which we
search for a binding bottom-up, and the name of the variable
as input. We derive the bottom-up lookup function based
on the call sites of check and infer. The call sites for the
subterms of Succ, Anno, and App pass the context unchanged.
Inversely, the bottom lookup function continues searching
for a binding in the parent term.
The call site for the body of a Lam is more interesting be-

cause we use an extended context. This allows us to illustrate
the general translation scheme:

1. Match the parent term to identify the call site of check
or infer.

2. Compute the program slice for the context argument
of the call site.

3. Copy the program slice into lookup.
4. If the context was extended, check if the variable ref-

erence is bound here. If it is, return the type that was
put in the context for it.

5. If the variable’s binding was not found yet, continue
in term’s parent.

If the current term has no parent, we reached the root of the
program and lookup fails.

4 Discussion and Open Challenges
Wehave proposed three transformations steps for translating
a type checker into a Datalog-compatible one. The final type
checker is compatible with Datalog because the functions
only take finite domains as input for any given program.
To confirm this compatibility, we reimplemented the final
type checker in a Datalog dialect called IncA [10, 11]. While
we don’t have space to show the IncA code, the translation
was eased by IncA’s notation, which resembles functional
programming. The only difference to the type checker shown
here is that type errors (invocations of fail) are collected in
a separate AST traversal. We have manually tested the IncA
type checker and confirmed that type results are updated
incrementally when the input program changes. Thus, we

lookup :: Term → Name → Typed Type

lookup t x = case parent t of

Just (Succ t p) → lookup (Succ t p) x

Just (Anno t ty p) → lookup (Anno t ty p) x

Just (App t1 t2 p) | t == t1 →

lookup (App t1 t2 p) x

Just (App t1 t2 p) | t == t2 →

lookup (App t1 t2 p) x

Just (Lam x' t p) →

if x == x'

then do

ty ← required (Lam x' t p)

(ty1 , _) ← matchFun ty

return ty1

else lookup (Lam x' t p) x

Nothing → fail ["Unbound␣variable"]

Listing 3. The derived bottom-up lookup function.
have successfully derived incremental type services for the
bidirectional simply typed lambda calculus.

We envision that our approach canwork to derive efficient,
incremental type services in general. To this end, we identify
the following challenges:
Generalization. We have shown how to derive incremental

type services for a single language so far. We want to
study to which languages we can generalize the proposed
method. For example, we want to investigate how to
support subtyping, records, objects, nominal typing, type
classes, dependent types, and other features.

Type system DSL. Wewould like to define a domain-specific
language that can be used to declare rich type systems.
This DSL would be the basis for a compiler that has IncA
as a compilation target. We will draw inspiration from
existing type system DSLs [1, 12].

Transformation mechanization. The transformations out-
lined in the previous section have not yet been rigorously
spelled out. To clarify the exact prerequisites and behav-
ior of the transformations, we will mechanize their defi-
nition. We hope this will also enable us to validate that
the transformations preserve the type system semantics.

Performance. Finally, wewant to evaluate the performance
of our derived Datalog type services. We are mostly in-
terested in the incremental performance: How long does
it take to receive fully updated typing information after
a program change.

Acknowledgments
We thank the anonymous reviewers for their feedback on this
paper. Additionally, we would like to thank our colleagues
Sven Keidel and Tamás Szabó for their useful feedback.

References
[1] Lorenzo Bettini, Dietmar Stoll, Markus Völter, and Serano Colameo.

2012. Approaches and Tools for Implementing Type Systems in Xtext.
In Software Language Engineering, 5th International Conference, SLE
2012, Dresden, Germany, September 26-28, 2012, Revised Selected Papers

200

Generating Incremental Type Services SLE ’19, October 20–22, 2019, Athens, Greece

(Lecture Notes in Computer Science), Krzysztof Czarnecki and Görel
Hedin (Eds.), Vol. 7745. Springer, 392–412. https://doi.org/10.1007/978-
3-642-36089-3_22

[2] Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and
Mira Mezini. 2015. A co-contextual formulation of type rules and its
application to incremental type checking. In OOPSLA. ACM, 880–897.

[3] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting
gradual typing. In POPL. ACM, 429–442.

[4] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou.
2013. Datalog and Recursive Query Processing. Foundations and Trends
in Databases 5, 2 (2013), 105–195.

[5] Görel Hedin. 2000. Reference Attributed Grammars. Informatica
(Slovenia) 24, 3 (2000).

[6] Edlira Kuci, Sebastian Erdweg, Oliver Bracevac, Andi Bejleri, and Mira
Mezini. 2017. A Co-contextual Type Checker for Featherweight Java.
In ECOOP (LIPIcs), Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 18:1–18:26.

[7] Benjamin C. Pierce and David N. Turner. 1998. Local Type Inference.
In POPL. ACM, 252–265.

[8] Kenneth A. Ross and Yehoshua Sagiv. 1992. Monotonic Aggregation
in Deductive Databases. In PODS. ACM Press, 114–126.

[9] Emma Söderberg. 2012. Contributions to the Construction of Extensible
Semantic Editors. Ph.D. Dissertation. Lund University.

[10] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.
2018. Incrementalizing lattice-based program analyses in Datalog.
PACMPL 2, OOPSLA (2018), 139:1–139:29.

[11] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a
DSL for the definition of incremental program analyses. In ASE. ACM,
320–331.

[12] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and
Eelco Visser. 2018. Scopes as types. PACMPL 2, OOPSLA (2018),
114:1–114:30. https://doi.org/10.1145/3276484

[13] Guido Wachsmuth, Gabriël D. P. Konat, Vlad A. Vergu, Danny M.
Groenewegen, and Eelco Visser. 2013. A Language Independent Task
Engine for Incremental Name and Type Analysis. In SLE (Lecture Notes
in Computer Science), Vol. 8225. Springer, 260–280.

201

https://doi.org/10.1007/978-3-642-36089-3_22
https://doi.org/10.1007/978-3-642-36089-3_22
https://doi.org/10.1145/3276484

	Abstract
	1 Introduction
	2 A Bidirectional Type Checker
	3 Translation to Datalog
	3.1 Computing All Types and Type Errors
	3.2 Eliminating the Type Argument
	3.3 Eliminating the Context Argument

	4 Discussion and Open Challenges
	References

