
Towards Live Language Development

Gabriël Konat Sebastian Erdweg Eelco Visser
Delft University of Technology

g.d.p.konat@tudelft.nl, s.t.erdweg@tudelft.nl, visser@tudelft.nl

Abstract
We would like to see live programming applied to language
development, to get live language development. With live
language development, a language developer gets fast feed-
back when they change their language, enabling experimen-
tation with language design and development.

In this paper, we describe what live language develop-
ment is and why it is useful, and we analyze what is needed
to achieve live language development. Moreover, we de-
scribe our work in progress in supporting live language de-
velopment in the Spoofax language workbench.

1. Introduction
A language workbench is a language development environ-
ment for developing domain-specific (DSL) and general-
purpose programming languages. Language developers de-
fine their language as a language specification in the lan-
guage workbench. From such a language specification, the
language workbench derives a concrete language implemen-
tation.

We would like to see live programming applied to lan-
guage development in language workbenches, to get live
language development. With live language development, a
language developer gets fast feedback when they change
their language, enabling experimentation with language de-
sign and development. For example, if a developer changes
a grammar production, we expect updated feedback for the
grammar specification, but also an updated parser which pro-
duces new feedback in the form of syntax errors for all pro-
grams of that language.

In this paper, we present a mission statement for live
language development. We describe what live language de-
velopment is and why it is useful, and we analyze what is
needed to achieve live language development. Moreover, we

[Copyright notice will appear here once ’preprint’ option is removed.]

DSL specification

DSL implementation

DSL program DSL program

SDF 3.0 implementation

SDF 3.0 specification

SDF 2.9 implementation

Programming

Language
development

Meta-language
(language workbench)
development

Bootstrapping

Figure 1. Overview of the different levels of specification.
An arrow means ’is specified in’. A DSL program is speci-
fied in the DSL language implementation, the DSL specifi-
cation is specified in the SDF meta-language, and so forth.

describe our work in progress in supporting live language
development in the Spoofax [8] language workbench.

Note that this paper is about the liveness of a language
development environment itself, not about support for de-
signing or developing live programming languages.

2. Mission Statement
2.1 What do we want and why?
In short, we would like to get the entire stack from Figure 1
to be live. We will explain each part of the figure in this
section.

Many IDEs such as Eclipse, IntelliJ, and Netbeans, and
editors such as emacs, vim, and atom, provide fast feedback
when a program changes. Feedback comes in the form of
updated syntax highlighting, errors and warnings, outline,
folding, and so forth. Programmers (or software developers)
rely on fast feedback to quickly find and fix problems in
their programs. But what about changes to the language a
program is written in?

1 2016/5/26



Language developers would also like to get fast feedback
when a language is changed. A language is implemented
or specified in a language specification. From the specifi-
cation, a language implementation is derived. When a lan-
guage specification is changed, we would like to get fast
feedback for the change in the language specification itself,
but also for all programs of that language. In other words,
changes to a language specification should be cascaded into
changes to the programs of that language. For example, if
we change a typing rule in a language specification, we ex-
pect to see updated syntax highlighting and outlines for the
specification, but also see type errors to appear or disappear
in all programs.

With fast feedback for language changes, language devel-
opers can quickly explore the consequences of the changes
made and react accordingly, enabling experimentation with
language design and development.

Meta-languages are languages that are specifically made
to specify or implement a (part of a) language. Language
workbenches typically employ meta-languages for the spec-
ification of languages through language specifications. For
example, the Spoofax Language Workbench provides the
SDF [14] meta-language for specifying the grammar of a
language, the TS language for specifying the type system of
a language, and many more meta-languages for specifying
different aspects of a language. A language specification in
Spoofax consists of one or more programs of these meta-
languages, from which a language implementation can be
derived.

Language workbench developers (who develop meta-
languages) would also like to get fast feedback when a meta-
language is changed. When a meta-language is changed, we
expect fast feedback for the change to the meta-language,
all language specifications that use that meta-language, and
all programs of those languages. This requires cascading of
changes one level deeper.

A meta-language is frequently bootstrapped or self-
hosting, meaning that it is specified in itself. Bootstrapping
eases the development of the meta-language, and is a sig-
nificant test case for the meta-language. Fast feedback for
bootstrapped meta-languages should also be supported.

Programs, language specifications, and meta-languages
can break, especially by experimentation with fast feedback.
Breaking a program or language specification is not a big
problem, since the change can easily be reverted by an undo
operation or by fixing the problem. However, breaking a
bootstrapped meta-language poses more problems, because
it will not be able to bootstrap itself any more. A more
sophisticated mechanism for reverting changes or fixing a
broken bootstrapped meta-language is required.

To summarize: We would like to see fast feedback for
language and (bootstrapped) meta-language development.

2.2 What do we need to achieve that?
To support fast feedback for changes to programs, lan-
guages, and (bootstrapped) meta-languages, we require live
language services, and a language registry to support live
language development and live bootstrapping.

A common requirement for fast feedback is that changes
should be visible in the same environment. A development
environment is an environment that hosts language imple-
mentations and their programs, such as the IDEs and editors
mentioned earlier. For example, when a program is edited in
Eclipse, feedback appears in the same environment. Starting
or restarting the environment to get feedback requires man-
ual steps and introduces a lot of latency.

A development environment needs to provide live lan-
guage services. Language services include a parser, ana-
lyzers, transformations, editor services, etc. Live language
services provide fast feedback when a program changes. A
pipeline executes the relevant services when a change to the
program is made, and presents feedback to the user. This is
what IDEs and editors already provide an infrastructure for.

A language development environment is an environment
that hosts meta-languages, language specifications, their de-
rived language implementations, and programs of languages.
An example of such an environment is the Spoofax language
workbench.

To support live language development, language ser-
vices should respond to changes in the language specifi-
cation, within the same environment. A language registry
keeps track of (multiple) language specifications and their
derived implementations, and provides fast feedback when
languages are added, removed, or changed. Whenever a lan-
guage specification is changed, the language registry reexe-
cutes the language service pipeline to provide new feedback
for programs.

In essence, changes to a language specification are cas-
caded into language service changes. This cascading can oc-
cur multiple times in the case of changes to meta-language
specifications, which may trigger changes to other lan-
guages, which in turn triggers the reexecution of language
service pipelines, and so on.

Live bootstrapping is live language development applied
to bootstrapped meta-languages. To support live bootstrap-
ping, language specifications and implementations must be
versioned, and dependencies from language specifications to
language implementations must be supported.

Versioning and dependencies are required for two rea-
sons. First, we need versioning and dependencies because
a meta-language needs to depend on a previous version of
itself to be able to bootstrap itself. For example, to boot-
strap SDF 3.0 (i.e. compile the SDF 3.0 specification), we
require a dependency on the (previously bootstrapped) SDF
2.9 language implementation. Second, we need versioning
and dependencies because it needs to be possible to boot-
strap a meta-language after an erroneous release by reverting

2 2016/5/26



Figure 2. Language development in Spoofax. Left: the Entity language’s syntax specification (specified in the SDF3 meta-
language). Top: an example Entity program. Bottom: abstract syntax tree (AST) of the program. Right: outline of the program.

Figure 3. Live language development in Spoofax. A production in the syntax specification is commented out, which updates
the rest of the environment. The example program now indicates an error, the AST has changed (even though parsing fails, we
still approximate the AST through error recovery), and the outline has changed.

3 2016/5/26



to a previous version. For example, if we bootstrap an erro-
neous SDF 3.0, SDF 3.1 must be based on SDF 2.9 instead
of 3.0.

The language registry should support keeping track of
multiple versions of a language, being able to switch be-
tween versions, and should execute the language service
pipeline when versions change.

To summarize: For live language development and live
bootstrapping to work, a language registry is required that
keeps track of languages, supports versioning and dependen-
cies between languages, and processes changes to languages,
which triggers the execution of live editor services.

3. Live Language Development in Spoofax
Spoofax [8] is a textual language workbench in which
a language is specified in several domain-specific meta-
languages, such as SDF [14], Stratego [2], NaBL [12], and
TS. From a language specification, Spoofax derives a lan-
guage implementation with a full-fledged development en-
vironment. With Spoofax, language engineers can specify
their language, and derive (instead of manually implement)
the hairy implementation details of a language development
environment for their language. Live language development
in Spoofax is a work in progress, but with the latest ver-
sion of Spoofax we have taken significant steps towards live
language development and live bootstrapping.

Spoofax consists of a platform-independent core (a Java
API), and several adapters of that core to specific platforms
such as the Eclipse and IntelliJ IDE platforms, the Maven
and Gradle build system platforms, and a command-line
interface.

Spoofax is a development environment that supports live
language services. We interface with the language services
of the Eclipse and IntelliJ IDE platforms to provide a live
development environment. When a source file is edited in an
Eclipse or IntelliJ editor, Spoofax runs the language service
pipeline, which updates the styling, error messages, outlines,
etc. and displays that in editors. Other editors for affected
source files of a change (e.g. deleting a class that is used in
a different source file) are also updated through incremental
name and type analysis [16].

Spoofax is also a language development environment that
supports live language development and live bootstrapping.
At the core of Spoofax is a language registry that keeps track
of language specifications, implementations, and their pro-
grams. Language specifications and programs of those lan-
guages can be edited side-by-side, in the same environment,
as seen in Figure 2.

Whenever a language specification is changed, the de-
rived language implementation is compiled and reloaded
into the same environment, which triggers the language reg-
istry to execute the language service pipeline for all pro-
grams of that language. Figure 3 shows an example of a
change to the syntax specification (commenting out a pro-

duction) of the Entity language. Spoofax updates the rest of
the environment after a language specification change. This
works for changes to meta-languages as well, cascading the
changes to language specifications and programs.

Spoofax’s language registry also supports live bootstrap-
ping. The language registry versions language specifications
and implementations, and supports dependencies between
them. When a meta-language breaks, we can revert back to
a consistent state by selecting a working version.

The liveness in Spoofax is different from most live pro-
gramming systems. Instead of updating a running language
implementation when changes are made, we generate a lan-
guage implementation, compile it, and reload it into the envi-
ronment. Using incremental compilation techniques [5], we
try to make generation and compilation only take time rela-
tive to the size of the change.

Changes to the syntax are fast, since we can quickly gen-
erate, compile, and reload the parser implementation. How-
ever, changes to static analysis and transformations are not
fast, since their compiler is not incremental. This means that
feedback for syntax changes can be considered fast, whereas
feedback for analysis and transformation changes are still
slow. Since our meta-languages perform a lot of analysis and
transformations, feedback from changes to meta-languages
are also slow.

In the future, we would like to fully implement the mis-
sion statement from this paper. Missing right now is fast
feedback for changes to the static analysis and transfor-
mations of a language, and fast feedback for changes to
(bootstrapped) meta-languages. That requires an incremen-
tal compiler for the Stratego meta-language, which we use
for analysis and transformation.

4. Related Work
Most language workbenches support some form of live lan-
guage development, i.e. (re)loading a language into the same
environment without restarting.

Rascal [10, 11] is an extensible metaprogramming lan-
guage and IDE for source code analysis and transformation.
Rascal’s meta-language is interpreted, allowing changes to a
language specification to be directly interpreted.

MPS [15] is an open-source projectional language work-
bench. A projectional language workbench providing a pro-
jectional editor that can display and edit an underlying tree
structure. MPS applies changes to a language specification in
the same environment and updates programs where needed.

MetaEdit+ [9] is a platform-independent graphical lan-
guage workbench for domain-specific modeling. A graphi-
cal language workbench provides a graphical editor for dis-
playing and editing models. MetaEdit+ processes changes to
a language specification and applies them in the same envi-
ronment, updating all models to conform to the new spec-
ification, or warning the developer of a change can break
existing models.

4 2016/5/26



SugarJ [4, 6] is a Java-based extensible programming lan-
guage that allows programmers to extend the base language
with custom language features. SugarJ uses self-extension to
develop language implementations as extensions, which are
loaded into the same environment by importing the exten-
sions.

Racket [13] is an extensible programming language in
the Lisp/Scheme family, which can serve as a platform for
language creation, design, and implementation. Racket also
uses self-extension, and supports live language development
through the DrRacket IDE.

A notable exception to live language development is
Xtext [1, 3, 7]; an open-source framework for development
of programming languages and DSLs. Languages in Xtext
are Eclipse or IntelliJ plugins, which cannot be dynamically
loaded. A new Eclipse or IntelliJ instance has to be started
to get feedback for changes.

The MPS, DrRacket, and MetaEdit+ language work-
benches support live bootstrapping in addition to live lan-
guage development. However, when a bootstrapped meta-
language breaks, MPS and DrRacket cannot revert the
change and fix the environment. The environment has to
be restarted to revert to a working baseline.

MetaEdit+’s languages are changed through modeling
transactions. Inside a transaction, an undo operation can go
back one modeling step, and the entire transaction can also
be abandoned. Undoing and abandoning can thus revert a
change that breaks a meta-language implementation, and fix
the environment.

5. Conclusion
We would like to see live programming applied to (meta-)
language development, to support fast feedback for changes
to programs, languages, and (bootstrapped) meta-languages.
With fast feedback for language changes, language devel-
opers can quickly explore the consequences of the changes
made and react accordingly, enabling experimentation with
language design and development.

To support fast feedback for changes to programs, lan-
guages, and (bootstrapped) meta-languages, we require live
language services, and a language registry to support live
language development and live bootstrapping. Live language
services provide fast feedback when a program changes,
whereas the language registry provides fast feedback when
a language changes.

Live bootstrapping requires that the language registry ver-
sions languages and supports dependencies between lan-
guages, such that a meta-language can be bootstrapped with
its previous version, and reverting to a previous version is
possible in case the meta-language breaks.

The Spoofax language workbench supports live language
development and bootstrapping (Figures 2,3) in the sense
that a language can be reloaded and feedback can be ob-
served. Feedback for changes to the syntax specification is

fast, but changes to the static analysis and transformation is
not. In the future, we would like to make this kind of feed-
back fast as well.

References
[1] Lorenzo Bettini. Implementing java-like languages in xtext

with xsemantics. In SAC, pages 1559–1564, 2013.

[2] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and
Eelco Visser. Stratego/XT 0.17. A language and toolset for
program transformation. SCP, 72(1-2):52–70, 2008.

[3] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian
Zarnekow, Robert von Massow, Wilhelm Hasselbring, and
Michael Hanus. Xbase: implementing domain-specific lan-
guages for java. In GPCE, pages 112–121, 2012.

[4] Sebastian Erdweg. Extensible Languages for Flexible and
Principled Domain Abstraction. PhD thesis, Philipps-
Universität Marburg, March 2013.

[5] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A
sound and optimal incremental build system with dynamic
dependencies. pages 89–106. ACM, 2015.

[6] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Sugarj: library-based syntactic language
extensibility. In OOPSLA, pages 391–406, 2011.

[7] Moritz Eysholdt and Heiko Behrens. Xtext: implement your
language faster than the quick and dirty way. In OOPSLA,
pages 307–309, 2010.

[8] Lennart C. L. Kats and Eelco Visser. The Spoofax language
workbench: rules for declarative specification of languages
and IDEs. In OOPSLA, pages 444–463, 2010.

[9] Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+:
A fully configurable multi-user and multi-tool case and came
environment. In caise, pages 1–21, 1996.

[10] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Easy meta-
programming with rascal. In GTTSE, pages 222–289, 2009.

[11] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Rascal:
A domain specific language for source code analysis and
manipulation. In SCAM, pages 168–177, 2009.

[12] Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth,
and Eelco Visser. Declarative name binding and scope rules.
In SLE, pages 311–331, 2012.

[13] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. Languages as libraries.
In PLDI, pages 132–141, 2011.

[14] Eelco Visser. Syntax Definition for Language Prototyping.
PhD thesis, University of Amsterdam, September 1997.

[15] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd
Kolb. Towards user-friendly projectional editors. In SLE,
pages 41–61, 2014.

[16] Guido Wachsmuth, Gabriël D. P. Konat, Vlad A. Vergu,
Danny M. Groenewegen, and Eelco Visser. A language inde-
pendent task engine for incremental name and type analysis.
volume 8225 of Lecture Notes in Computer Science, pages
260–280. Springer, 2013.

5 2016/5/26


	Introduction
	Mission Statement
	What do we want and why?
	What do we need to achieve that?

	Live Language Development in Spoofax
	Related Work
	Conclusion

