IncA,: A DSL for Incremental Program Analysis
with Lattices

Tamas Szabd6
itemis, Germany /
TU Delft, The Netherlands
tamas.szabo@itemis.de

ABSTRACT

We describe IncAr, a DSL for incremental lattice-based
program analyses. IncAry, is an extension of our previous work,
IncA, which supported relational program analyses, that has
been used for practically relevant analyses on industrial code
bases. IncAj improves the expressive power of IncA by
adding support for synthesis of data, enabling, for example,
incremental execution of interval analysis.

1. INTRODUCTION

Program analyses are at the core of refactorings and error
checking in integrated development environments, and they
are also fundamental for optimizations in compilers. On the
one hand, program analyses should be precise (the various
*_sensitivity properties, such as flow- and context-sensitivity),
but on the other hand, they should also be fast and mem-
ory efficient. The literature documents a vast amount of
approaches, that deliver either on precision [2] or on perfor-
mance [1]; delivering on both is still a challenge.

In prior work [3], we introduced a domain-specific language
(DSL) called IncA for defining efficient incremental program
analyses that update their result as the subject program
changes. IncA can express relational analyses, i.e., analyses
that create relations between nodes in the abstract syntax
tree (AST) of the subject program. We implemented several
relevant analyses this way (e.g. control flow analysis, see
later), and industrial experience and systematic experiments
show that it scales to large code bases as documented in [3].

However, there are many analyses that require the synthe-
sis of new data, and not just the creation of relationships
between ezisting data. Examples include interval analy-
sis or type state analysis. To fill this gap, in our current
work, we created IncAy,, an evolution of IncA, that supports
lattice-based analyses. The choice for lattices is motivated
by two reasons: (1) lattices directly represent varying pre-
cision through their structure and the definition of lattice
operations, and (2) the monotonicity of lattice operations is
crucial fixpoint computations that are common in program
analyses frameworks (including IncAy,).

In this paper, we document the evolution of IncA and
IncAj, into an expressive and efficient incremental program
analysis framework. We discuss key challenges that we have
already solved, present the state of our current work around
lattice-based analyses, and identify open challenges.

2. FROM IncA TO IncA; AND BEYOND

The vexing trade-off between expressivity and performance
governs the development of IncA: developers want increasing

Markus Voelter
independent / itemis,
Germany
voelter@acm.org

Sebastian Erdweg
TU Delft, The Netherlands
s.t.erdweg@tudelft.nl

expressiveness in the language, , while, at the same time,
retaining incrementality which is crucial for efficiency.

2.1 Past: Relational Analyses with IncA

Relational analyses rely on establishing relationships between
AST nodes of the subject program. Graph patterns are a
natural choice for representing such relations because they
prescribe an expected structure on a graph. Efficient in-
cremental graph pattern matching algorithms and libraries
are available [4]. Typically, these algorithms allow either
recursive graph patterns or subject programs with cycles but
not both. However, practically relevant program analysis
require both.

Thus, a key early challenge for IncA was to support re-
cursive analyses on recursive programs in the face of both
insertions and deletions. Our past work focused on devel-
oping IncA as a language, and the extension of an existing
incremental graph pattern matching framework to support
the language. As described in [3], our solution scales to in-
dustrial code bases, and supports several real-world analyses.

Example IDEs and compilers use control flow analysis to
reason about the execution order of statements in a program
and as a building block for further analyses such as the
interval analysis described later. Fig 1 (B) shows the AST of
the program in Fig 1 (A). Fig 1 (C) shows the control flow
graph (CFQG) of that program.

The IncA control flow analysis uses pattern functions to
encode relations between AST nodes of the subject program.
Fig 1 (D) shows the cFlow function that takes as input a node
of type Stmt and returns another Stmt. A pattern function
can have several alternative bodies that each encode a way
of obtaining the output(s) from the input(s), thus defining a
relation between the program nodes. For example, the second
alternative derives the N2-N3 edge by first navigating to the
statements in the body of the while, and then returning the
statement that has no predecessor (note the undef construct
for negation) because control would first flow to the first
statement in the loop body. In IncA, the result of a program
analysis consists of tuples of a relation as shown in Fig 1 (C).

2.2 Current: Lattices in IncA .

IncA was limited to relating AST nodes because of the re-
stricted expressivity of the IncA language, and because of
missing capabilities in the runtime system. In turn, analyses
that require the synthesis of new data could not be expressed,
and thus could not benefit from IncA’s incrementality. A
prime example is an interval analysis that derives the po-
tential ranges of values (the synthesized data) of program
variables. Given the code snippet in Fig 1 (A), assuming

void measure() { A ReliﬁonF?eﬁned €| tattice mmerval ¢ -
(N1) int temp = 10; @ y crlow constructors: Empty |
. ! rg Complete |
(N2) while (...) { g Interval(int, int)
(N3) temp++; 2 operations:
} 4 def bot() : Interval = { return Empty }
(N4) ... def top() : Interval = { return Complete }
} def leq(l:Interval, r:Interval) : bool = { ... }
B — T def lub(l:Interval, r:Interval) : Interval = { ... }
measure : Func def cFlow('-:sr'; : Stmt) : Stmt def glb(l:Interval, r:Interval) : Interval = { ... }
stmts”_next “\stmts trg := suctessor(sirc) }
| temp : VarDec! | | WhileStmt | return tr Cd
cond stmts }alt { : F
| assert srcflnsta‘hceOf WhileStmt def getIntBef(s : Stmt, v : Var) : Interval with lub = {
\ I Expr | I ExprStmt I trg := srcf'stmfs assert src instanceOf Stmt
\ . = s := cFlow(src)
assert und(?'fr predecessor(trg) return getIntAft(src, v)
var~._ return trgr }
T Yaltt { ..o} def getIntAft(s : Stmt, v : Var) : Interval with lub = { ... }

Figure 1: Ingredients of IncAj, program analyses: (A) the analyzed C code snippet, (B) its AST, (C) its CFG, (D)
IncA code for control flow analysis, (E) definition of the interval lattice in IncAy, and (F) IncAp code for interval
analysis. The solid lines in (B) represent containment edges, while the dashed lines represent references to other AST
nodes. The dotted lines between (C) and (D) show the alternative body that derives the respective CFG edge.

that the interval analysis does not know how many times
the loop will be executed, it would associate with temp the
[10, 10] interval at N1, [10,00) at N2/N4, and [11, co) at N3.

Lattices naturally represent the varying precision of the
synthesized data (e.g., the jump to oo is a reduction in
precision). Analysis developers design the lattice structure
to fit the precision requirement of a given use case (e.g.,
live error checking can accept lower precision as long as it
is fast; a compiler optimization requires the opposite), and
define lattice operations (least upper bound, greatest lower
bound, fixpoint accelerators such as widening) in a way that
obeys the desired degree of over-/under-approximation. For
example, for the interval analysis, one may decide to allow a
specific number of loop iterations, and, if the analysis does
not converge to a fixpoint interval during those iterations,
then widen it to the top of the lattice.

IncAr adds user-definable lattices to IncA; the key chal-
lenge here is to support aggregate computations on synthe-
sised data in the presence of recursive analyses and subject
programs (shown below). We exploit the monotonicity of
the lattice operators for fixpoint-based computations.

Example Fig 1 (E) shows the Interval lattice expressed
in IncAy,. Fig 1 (F) shows a part of the interval analysis for
C in IncAy,. It consists of two recursively dependent pat-
tern functions getIntBef and getIntAft. getIntBef takes
a Stmt s and a Var, and returns Interval that holds the
potential range of values for the variable before s. getIntAft
returns the interval after s. getIntBef uses the previously
shown cFlow function to obtain the control flow predeces-
sor(s) for s, and it returns the interval that was assigned
to the given variable after the execution of the predeces-
sor(s) as computed by getIntAft. The potential for having
multiple CFG predecessors leads us to the requirement for
aggregation: instead of tracking individual intervals, we typ-
ically want to combine them based on the lattice’s 1ub or
glb operator. For instance, the initial interval for temp was
[10, 10], and, after the first evaluation of the loop body, we
derived a new interval [11,11]. This is propagated back to
the loop head through the N3-N2 CFG edge. We now have to
aggregate these two intervals, leading to [10,11]. In IncAy,
the aggregation is controlled by annotations on lattice types
as shown in Fig 1 (F). Both functions use the lub annotation
which means that the runtime system uses the least upper
bound operator to aggregate intervals. This example shows

that IncAy, is capable of expressing lattice-based analyses
and incrementalize their evaluation. However, the degree of
incrementality is suboptimal as explained next.

2.3 Future: Deltas Between Lattice Values

So far, the unit of incrementalization in IncAyr, was the tuple
of a relation (Fig 1 (C)); the increments in the analysis result
were represented as insertions and deletions of whole tuples.
Consider now the tuples associated with the loop body:
(N3, temp, [10,10]), (N3, temp, [10,11]), ..., (N3, temp,
[10,00)). Only the lattice value changes! However, IncAy,
represents the increments as a delete of the previous tuple
and an insert of the new tuple. This prevents incremental
reuse of previous computations. If we change the initializer at
N1 from 10 to 11, IncAr cannot reuse results from previous
computations because, not understanding deltas between
lattice values, it treats them as individual values without
any relationship to one another. Consequently, IncAy, will
perform a re-analysis of the loop. In our future work we
will work on automatically deriving the delta representation
for a lattice, leading to better incremental reuse of previous
computations, and, in turn, better performance.

3. TALK OUTLINE

The talk will describe the evolution of IncA and IncA;, with
real-world examples. We first give a tour of the IncA DSL, its
capabilities in comparison to other tools, and our performance
benchmarks. Then, we show the algorithmic challenges of in-
crementalizing lattice-based computations in IncAy,. Finally,
we highlight the research challenge of identifying the delta
representation between lattice values in more detail.

4. REFERENCES

[1] A. Egyed. Instant Consistency Checking for the UML.
ICSE, 2006.

[2] Y. Smaragdakis and M. Bravenboer. Using Datalog for
Fast and Easy Program Analysis. Datalog, 2011.

[3] T. Szabd, S. Erdweg, and M. Voelter. IncA: A DSL for
the Definition of Incremental Program Analyses. ASE,
2016.

[4] Z. Ujhelyi, G. Bergmann, Abel Hegediis, Akos Horvath,
B. Izsé, 1. Rath, Z. Szatmari, and D. Varré.
EMF-IncQuery: An integrated development environment
for live model queries. SCP, 2015.

	Introduction
	From IncA to IncAL and beyond
	Past: Relational Analyses with IncA
	Current: Lattices in IncAL
	Future: Deltas Between Lattice Values

	Talk Outline
	References

